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Abstract

Conventional Galerkin-based finite element algorithms perform poorly when modeling advective transport. Here we

develop and test a characteristic Galerkin scheme to solve the unsteady three-dimensional advective transport equation.

The algorithm uses tracking of the Gaussian quadrature points to project the information from the Eulerian back-

ground grid to the Lagrangian grid. Numerical experiments were carried out to investigate the performance of this

scheme. Despite speculations to the contrary in the literature, this scheme does not suffer from instability problems.

Further, it is conservative, and shows good phase characteristics with slight numerical diffusion. We conclude that the

characteristic Galerkin method is a viable and efficient scheme for solving advection problems in three dimensions.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the linear advection equation

oc
ot

þ ~VV � rc ¼ 0; ð1Þ

where cð~xx; tÞ is an advected scalar and ~VV ð~xx; tÞ is a known velocity field. The initial condition is

cð~xx; t ¼ 0Þ ¼ c0ð~xxÞ ð2Þ

and boundary data are defined on the inflow portion of the computational domain.
It is well known that the conventional Galerkin finite element method of spatial discretization,

along with classical time discretization methods, fail to produce satisfactory solutions to Eq. (1). Spurious

node-to-node oscillations are generated, particularly in regions of high gradients in the solution. These
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oscillations are related to the characteristic lines playing a dominant role in the solution of such hyperbolic
equations. Since time and space are linked through the characteristics, care must be exercised to properly

‘‘balance’’ the temporal and spatial discretization approaches [31].

In general, oscillations may be eliminated by spatial mesh refinement in zones of high gradients, ac-

companied by temporal refinement in time-dependent problems. However, for large problems in 3-D, this is

usually not feasible. With the practical relevance of advective processes to many industrial, environmental,

atmospheric and biomedical problems (for example see [8,10,17,29,30,38,40,41]), there is considerable

motivation for developing alternatives to the standard Galerkin method. Such alternate approaches should

preclude oscillations regardless of mesh or time step refinement. Further, certain computational attributes
are desired for such schemes, namely stability, accuracy, conservation, shape preservation and computa-

tional efficiency. No single scheme devised to date can satisfy all these requirements, and thus compromises

must be made.

Several numerical techniques have been proposed in the literature to deal with advection. These schemes

can be divided into three broad groups: Eulerian, Lagrangian, and Eulerian–Lagrangian. These three

classes of schemes are briefly reviewed below in the context of finite element methodology.

Eulerian schemes: Most numerical techniques devised for advection are Eulerian in nature. The Eulerian

methods are ‘‘local’’ in the sense that the spatial derivative in the advection equation is approximated based
on the information at the neighboring nodal points. The most popular Eulerian schemes for advection are:

the streamline upwind Petrov–Galerkin [7,22,28], Galerkin/least-squares [21,37], and Taylor–Galerkin [14–

16] methods. All these methods take into account the hyperbolicity of the equation and introduce some

kind of stabilization terms. A major drawback of all Eulerian methods is that, for either stability (in the

case of explicit time stepping) or accuracy (in the case of implicit time marching) reasons, the time step size

(local Courant number) is limited through a Courant–Friedrichs–Levy (CFL) restriction [12].

Lagrangian schemes: In the Lagrangian schemes (see for example [1]) the computational mesh moves

along the characteristics (fluid trajectories). Theoretically, the Lagrangian methods are well suited for
advective transport problems. But in practice, stretching and shearing of the original fluid particles distort

the mesh after a few time steps. Thus, these methods are rarely used.

Eulerian–Lagrangian schemes: In Eulerian–Lagrangian or characteristic methods, advection is treated by

using a Lagrangian tracking algorithm along characteristic lines while keeping the convenience of a fixed

computational grid. Points from within the Eulerian grid are tracked backward (or forward) along the

characteristics over the time step, thereby forming a Lagrangian grid. Numerical information from the

previous time level is projected from the background Eulerian grid onto the Lagrangian grid. A significant

advantage of these methods is that, owing to the Lagrangian nature of the advection step, the CFL re-
striction is relaxed. Moreover, because the spatial and temporal discretizations are combined as a result of

the Lagrangian tracking, the temporal discretization error is reduced markedly. In effect, the characteristic

methods perform the temporal discretization on the total derivative by tracking fictitious fluid particles

during each time step. Thus, the time truncation error is proportional to the total derivative of the solution

with respect to time, which is typically smaller than the local time derivatives. Hence, characteristic schemes

have the potential to be more accurate than their Eulerian counterparts.

Several versions of the characteristic method have been proposed in the literature (see for example

[6,23,34,39]). The most closely related formulation to our proposed scheme is the Eulerian–Lagrangian
localized adjoint method (ELLAM) [9], which, unlike other characteristic methods, retains the Eulerian

form of the transport equation and defines the test (weighting) functions to satisfy the adjoint operator of

the transport equation [9,33]. A finite-volume extension of ELLAM (abbreviated as FV-ELLAM) has been

developed in one-dimensional (1-D) [18], two-dimensional (2-D) [4,19], and later in three-dimensional (3-D)

[5,20] as a method for solution of the advection–dispersion-reaction equation governing contaminant

transport in groundwater problems.
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In the finite element context, the characteristic schemes combine the classical method of characteristics
with a Galerkin finite element approximation, and hence are called characteristic Galerkin schemes. Since

our overall goal is to apply the advection solver in complex 3-D geometries, we have focused in our work on

the finite element based techniques, since they are well proven to be capable of handling geometrically

complex computational domains. A detailed description of characteristic Galerkin schemes is presented in

Section 3.

2. Statement of purpose

Our objective was to develop, test, and characterize a 3-D characteristic Galerkin algorithm for treat-

ment of the pure advection equation (Eq. (1)). This was done in the context of a fully unstructured mesh

arising from a tetrahedral discretization of computational domains. As a first step, we implemented the

scheme in 2-D form, using both Dirichlet and periodic boundary conditions. Previous researchers have

suggested a ‘‘piecewise exact’’ method for projecting the information from the background Eulerian grid

onto the Lagrangian grid for stable 2-D characteristic Galerkin schemes [33,36]. This method works well,

but is difficult and computationally expensive to extend to 3-D. Therefore, in this work, a different ap-
proach based on tracking of Gaussian quadrature points has been employed. We then extend this scheme to

3-D with relative ease.

3. Description of the characteristic Galerkin scheme

Consider again the linear advection equation (Eq. (1)). Denote the position of a fluid element at time t,

which was (or will be) at ~xx at time s, by ~XX ð~xx; s; tÞ. Then the characteristic curves of this equation, along
which c remains constant, are defined by

d~XX

dt
ð~xx; s; tÞ ¼ ~VV ð~XX ð~xx; s; tÞ; tÞ ð3Þ

with

~XX ð~xx; s; sÞ ¼~xx: ð4Þ
Once the characteristics are known from Eq. (3), the solution to the advection equation is

cð~XX ð�; t; t þ sÞ; t þ sÞ ¼ cð�; tÞ; ð5Þ
where s is a time interval. When discretized in time with time step Dt, tn ¼ nDt, the characteristics can be
used to define

~xx ¼ ~XX ð~yy; tnþ1; tnÞ ð6Þ
and

~yy ¼ ~XX ð~xx; tn; tnþ1Þ: ð7Þ
Here~xx and~yy denote the departure point (at the ‘‘foot’’ of the characteristic line) at time tn, and the arrival
point (at the ‘‘head’’ of the characteristic line) at time tnþ1, respectively (see Fig. 1).
There are two ways to proceed with the characteristic Galerkin method. They are referred to as ‘‘weak’’

and ‘‘direct’’ methods [3,32,36], and are described below.
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3.1. Weak characteristic Galerkin scheme

Multiplication of Eq. (1) by a test function wið~xx; tÞ and integration over the spatial domain X, and over
the time interval between tn and tnþ1, yields the following weak formulation:

Z
X
ðcnþ1wnþ1

i � cnwn
i ÞdX �

Z tnþ1

tn

Z
X

owi

ot

�
þ ~VV � rwi

�
cdXdt �

Z tnþ1

tn

Z
X
cwir � ~VV dXdt

þ
Z tnþ1

tn

Z
C
wic~VV �~nndCdt ¼ 0; ð8Þ

where C is the domain boundary with outward-facing unit normal vector ~nn. We now restrict attention to
incompressible flows (r � ~VV ¼ 0) and choose the test functions to follow the physics of the problem, i.e.

owi

ot
þ ~VV � rwi ¼ 0 ð9Þ

with the condition that wnþ1
i ¼ /i, where /i are the (Eulerian) basis functions of the discrete functional

space. Then, Eq. (8) leads to

Z
X
cnþ1wnþ1

i dX ¼
Z

X
cnwn

i dX þ
Z tnþ1

tn

Z
C
wic~VV �~nndCdt; ð10Þ

where cnþ1 is approximated by finite element basis functions and time-dependent nodal values in the formP
j C

nþ1
j /j. Ignoring the boundary term,

1 e.g. in the presence of periodic boundary conditions or in the

case where ~VV �~nn ¼ 0, and expanding cnþ1 and cn, Eq. (10) yields
X
j

Cnþ1
j

Z
X

/jð~yyÞ/ið~yyÞd~yy ¼
X
j

Cn
j

Z
X

/jð~xxÞ/ið~yyÞd~xx: ð11Þ

Fig. 1. Schematic of Eulerian and Lagrangian grids for a characteristic Galerkin method.

1 In general, a boundary condition has to be applied when a characteristic or path line between tn and tnþ1 crosses the boundary. In
such a case, the integration of Eq. (3) stops at time t�, tn < t� < tnþ1. Application of Dirichlet boundary condition is the focus of
Section 3.5 of this work.
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3.2. Direct characteristic Galerkin scheme

A more direct formulation can be derived from Eq. (5). When discretized in time, Eq. (5) results in

cnþ1ð~yyÞ ¼ cnð~xxÞ: ð12Þ

The direct scheme proceeds from here in line with the Galerkin technique. Eq. (12) is multiplied by a

weighting function w and is integrated over the spatial domain (at time tnþ1). The weighting functions w are
chosen as equal to the Eulerian basis functions (at time tnþ1):

Z
X
cnþ1ð~yyÞwdX ¼

Z
X
cnð~xxÞwdX: ð13Þ

The scalar field is now expressed as a function of finite element basis functions and time-dependent coef-

ficients (nodal values), resulting in

X
j

Cnþ1
j

Z
X

/jð~yyÞ/ið~yyÞd~yy ¼
X
j

Cn
j

Z
X

/jð~xxÞ/ið~yyÞd~yy: ð14Þ

Comparing Eqs. (14) and (11), we note that the two alternative derivations result in the same system, except

that in the weak method the right-hand side integral is performed on d~xx whereas in the direct method this
integral is done on d~yy. If J is the Jacobian of the mapping from~xx to ~yy, we have [11,36]

djJ j
dt

¼ ðr � ~VV ÞjJ j: ð15Þ

For incompressible flows r � ~VV ¼ 0, and hence jJ j ¼ 1, i.e. d~xx ¼ d~yy. That is, the weak and direct formu-
lations are mathematically equivalent when applied to incompressible flows [36].

In the rest of this paper we focus on the direct formulation. The left-hand side of Eq. (14) leads to a

linear system with a symmetric, positive-definite mass matrix (having all negative and real eigenvalues)

which is easily inverted using standard methods, such as a preconditioned conjugate-gradient technique.

This avoidance of non-symmetric contributions from the advection operator is a major advantage of the

characteristic Galerkin method.
We now restrict our attention to linear triangular elements (in 2-D) and linear tetrahedral elements (in 3-

D). Area coordinates (2-D) and volume coordinates (3-D) (Lk; k ¼ 1; . . . ; d, where d ¼ 3 for 2-D and d ¼ 4

for 3-D), defined over the triangular and tetrahedral elements respectively, are employed as basis functions.

Then the left-hand side of Eq. (14) becomes

X
ele

Xd

j¼1
Cnþ1

j

Z
D

/jð~yyÞ/ið~yyÞd~yy ¼
X
ele

Xd

j¼1
Cnþ1

j

Z
D
LjLi d~yy i ¼ 1; . . . ; d; ð16Þ

where D is the area/volume of the triangle/tetrahedral element in 2-D/3-D, respectively. This integral can be
exactly determined by using well-known identities. The difficult task is the computation of the right-hand

side of Eq. (14) (RHS projection), which is the subject of the next section.

3.3. RHS projection

RHS projection represents the L2-projection of numerical information from the Eulerian background

grid onto the Lagrangian grid. The /ið~yyÞ are piecewise linear over the Eulerian element~yy, whereas /jð~xxÞ are
piecewise linear over the Lagrangian element~xx. Hence, exact evaluation of the RHS projection is in general
not possible, and an approximate method is required.
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It has been suggested that approximate L2-projection from one grid to another may cause instability [32].
In order to preclude this instability, a ‘‘piecewise exact’’ RHS projection method was proposed by Priestley

[36]. The piecewise exact method starts by backtracking the vertices of the Eulerian grid to locate their

departure points at tn. The interior of the element is assumed to have been transported linearly, i.e. the
triangular element is assumed to backtrack to a triangle. The intersection points of the Lagrangian element

with the background Eulerian grid are then located, and subregions over which /ð~xxÞ and /ð~yyÞ are both
linear are constructed and used to exactly calculate the integral of the elemental RHS over each subregion.

This method works well, but is difficult and computationally expensive to extend to 3-D. Thus, a different

RHS projection scheme was used in this work. The Gaussian quadrature points of the Eulerian element
were backtracked, and the Eulerian background elements that contain the departure points of these

quadrature points were located. The scalar values at these departure points were then determined by in-

terpolation from the Eulerian background grid at tn. Finally, the RHS integral was approximated using
Gaussian quadrature:Z

X
cnð~xxÞ/ið~yyÞd~yy ¼

X
ele

X
k

wkcnð~xxkÞ/ið~yykÞ: ð17Þ

Here, the index k refers to the quadrature points and cnð~xxkÞ is the scalar value at the departure point of
quadrature point k. According to our experience (see below), as long as one uses reasonable 2 quadrature

formulae, this scheme is stable.

It must be remarked that both of the above projection methods are approximate. The piecewise exact

method incorporates exact integration over approximate regions, since the transported element may in

practice be deformed by the convective process so that the triangular element described by the three

convected vertices is not exactly the one that is actually transported. The quadrature method, on the other
hand, performs approximate integration using exact quadrature points, i.e. individual quadrature points

are moved to their own departure point.

3.4. Searching algorithms

At each time step, and for every quadrature point, the Eulerian background element that contains the

departure location of the quadrature point (the departure element) must be located in order to interpolate

information onto the departure point (cnð~xxkÞ in Eq. (17)). This elemental searching is a potentially com-
putationally expensive part of the characteristic Galerkin scheme, and it is therefore critical that an efficient

search procedure be used. In this work, two algorithms were devised and implemented for elemental

searching: (1) zone-based search, and (2) search based on nearest node. They are described below.

3.4.1. Zone-based search

The steps involved in this method are as follows:

• In a preprocessing step, the computational domain is circumscribed with a quadrilateral. This quadrilat-
eral is then sub-divided into quadrilateral (or rectangular, in 2-D) zones (see Fig. 2) whose size is equal to

the largest element (edge) size, i.e. maximum distance between two neighboring nodes, in the entire un-

structured mesh. A node-to-zone mapping table is then determined and used to create a zone-to-element

mapping table. Elements are included if they have at least one node in the zone.

2 In practice we found that quadrature formulae that use the centroid or vertices of the element as their only quadrature points, as

well as those with negative quadrature weights, resulted in instability for long-term simulations.
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• Based on its coordinates, the foot of a characteristic can be trivially assigned to a zone. Then, a search is

performed among the elements associated with this zone to locate the departure element. The element

search can be done fairly quickly by adopting a two-stage process: first check to see whether the depar-

ture point is within the bounding quadrilateral (or rectangle, in 2-D) of each element. If so, compute the

point�s barycentric coordinates. If all the barycentric coordinates lie in ½0; 1�, the element is the departure
element.

3.4.2. Search based on nearest node

This method is similar to that proposed by Pironneau [34], in which the departure element is searched for

element-by-element along the characteristic line upstream of the head of the characteristic. The major

difference is that Pironneau�s search method is interleaved with stepwise integration of the characteristic
lines, given the velocity field is known as a piecewise function. The present algorithm searches for the feet of

the characteristics through the closest nodes in an element-by-element fashion, and thus is similar to

Pironneau�s method while being very efficient at higher Courant numbers.
The specific steps in the search method based on nearest node are as follows:

• In a preprocessing step, create a node-to-node neighbor table and a node-to-element connectivity table.

• Select an arbitrary node from the element that contains the head of the characteristic, and denote this

node by n� (n�1 in Fig. 2).
• Using the node-to-node neighbor table, compute the distance between the departure point and the im-

mediate neighbors of n� as stored in the node-to-node neighbor table. As soon as a neighboring node is
found that is closer to the departure point than node n�, switch to that neighboring node, which is now
denoted as the new n� (see n�2 in Fig. 2).

Fig. 2. Schematic of the searching methods: zone-based search and search based on the nearest node. The subscript i in ni denotes the
evolution of the near node, n, from the first guess to the actual nearest node.
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• Repeat the above step until the distances from the departure point to all neighbors of n� are greater than
the distance from the departure point to n�.

• Using the node-to-element neighbor table, search the elements containing n� to find the departure ele-
ment.

3.4.3. Practical implementation details

In comparing the performance of the above searching methods, it was found that the second method was

faster than the first for local Courant numbers below approximately 5. Therefore, in practice we used the
following approach: First, depending on the local Courant number, the departure element associated with

the first quadrature point of an element was found using either the zone-based search method (if Cu > 5) or

the search method based on nearest node (if Cu6 5). Once the departure element of the first quadrature
point was known, we then used the search method based on nearest node to locate the departure elements

of the other quadrature points. In this case, we can exploit the previously found foot as a starting guess, i.e.

the seed node for the node-based search was simply a node belonging to the departure element corre-

sponding to the previously treated quadrature point.

For steady state simulations, we only needed to perform the trajectory approximation and the elemental
searching once, thanks to the temporally constant velocity field. In this approach, we march Eq. (1) to

convergence in pseudo-time, storing the trajectory information in a preprocessing step and using this in-

formation for each consecutive pseudo-time step.

3.5. Boundary condition treatment

Dirichlet boundary conditions must be taken into account when a characteristic crosses an inflow

boundary between tn and tnþ1. In this work, a variable time step method was devised to deal with such
boundary conditions, as follows. For characteristics whose feet were not located in the domain, the time t�

(tn < t� < tnþ1) at which the characteristic intersects the boundary and the location of intersection ~XXb were
determined. Since two unknowns (t� and ~XXb) existed, the trajectory was approximated iteratively in this
procedure. The iteration was seeded by taking ~XXb as the intersection point between the inflow boundary and
an imaginary straight line drawn between the head of the characteristic and the point found outside the

domain after integration of the characteristic line back to time tn. The corresponding t� was then estimated
by assuming that the particle traveled at a constant velocity equal to the velocity at the head of the

characteristic. The stopping criterion on the iteration can be chosen depending on how smooth the solution
is expected to be near the boundary. In the tests reported herein, we used a stopping criterion of 10�2 as the

tolerance in ~XXb. This typically required 4–6 iterations. Once the crossing point was found, the integration of
the characteristic line was stopped at time t�, and the Dirichlet scalar boundary data was imposed.
This algorithm works well for inflow boundaries with simple (e.g. planar) shapes. In such cases, if the

initial guess for the crossing point was not on the inflow portion of the domain, the time step was decreased

by a factor of 2 to increase the local accuracy of the characteristic approximation.

We have further demonstrated the viability of this boundary condition treatment through application of

the present algorithm in the simulation of highly advection-dominated mass transport in an anatomically
realistic human right coronary artery [26], and in physiologically relevant axisymmetric and asymmetric

arterial stenosis [24,27]. In both of these problems there are inflow boundaries with specified concentrations

(Dirichlet boundary conditions), impermeable walls, and outflow boundaries.

3.6. Numerical testing procedure

2-D and 3-D versions of the above characteristic Galerkin scheme were implemented in C using double

precision variable types. The code was tested by simulating the advection of a cos2-shaped concentration
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profile in a solid body rotation velocity field. The steep concentration gradients that exist at the sides of the
profile in the absence of physical diffusion make this test case valuable for evaluating an advection scheme

[2].

In 2-D the initial data was a cos2 cone with a base radius of 0.25 centered at ð�0:5; 0Þ, i.e.

c0ðx; yÞ ¼
1þ cos2 2pr for r6 0:25;
1 otherwise;

�
ð18Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ y2

q
. The velocity field was given by ~VV ðx; yÞ ¼ 2pð�y; xÞ on the domain X ¼ ½�1; 1�2.

Two types of boundary conditions were used. In some tests, periodic boundary conditions were imposed on

the domain boundaries. In other tests, Dirichlet boundary conditions of c ¼ 1 were applied at inflow

boundaries.
In 3-D the initial data was a cos2 ‘‘ball’’ with a base radius of 0.25 centered at ð�0:5; 0; 0Þ, i.e. of the same

form as given in Eq. (18) with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ y2 þ z2

q
. The velocity field was given by ~VV ðx; y; zÞ ¼

2pð�y; x; 0Þ, on the domain X ¼ ½�1; 1�3. Dirichlet boundary conditions of c ¼ 1 were applied at inflow

boundaries.

In all tests, various error norms were computed, including a Euclidean (L2) error defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
R

X ðCcomputed � CexactÞ2 dXÞ=ð
R

X C2exact dX
q

Þ.

4. Results

4.1. A systematic testing of the present method

Numerical experiments were done in 2-D to investigate the performance of the above scheme as certain

critical parameters were varied, namely the temporal and spatial resolutions. Additionally, studies were

done with different trajectory approximations, and with various Gaussian quadrature integration formulae.
Six meshes with different levels of refinement were used. The coarsest mesh had 10 triangles per side and is

denoted as 10� 10, and the finest mesh was 130� 130.

4.1.1. Gaussian quadrature formulations for the RHS projection

Six different high-order Gaussian quadrature formulae were implemented for evaluating the RHS of Eq.

(14). More specifically, the quadrature formulae taken from Cowper [13] consisted of a four-point scheme,

a six-point scheme, a seven-point scheme, a nine-point scheme, a twelve-point scheme, and a thirteen-point

scheme.
Medium (40� 40) to very fine (130� 130) grids were used, and a time step of Dt ¼ 0:025 was selected.

The trajectory approximation error was excluded by using the exact trajectories. It is noteworthy that for

all of the above quadrature formulae, the scheme was stable without any additional numerical diffusion.

Fig. 3 shows the Euclidean norm of error at the end of one revolution of the cone with the above

Gaussian quadrature formulae. As the figure demonstrates, a distinct improvement was observed in the

accuracy of the overall solution by increasing the number of quadrature points from 6 to 7. However, no

appreciable improvements were discovered by further increasing the number of quadrature points, at least

for the mesh spacing used in the present tests. This trend was also consistently observed in the other norms
of error. As evident in the figure, the spatial resolution did not appear to have a significant effect on this

trend.

Based on the above results, we adopted the seven-point Gaussian quadrature formula for the rest of the

2-D portion of the study.
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4.1.2. Different trajectory integration schemes

Accurate approximation of the characteristic lines is crucial to the overall accuracy of the characteristic

Galerkin method. Several integration methods for Eq. (3) were examined in this study, namely the implicit
second-order mid-point method, and the explicit first-, second-, third-, and fourth-order Runge–Kutta

methods. Errors in the numerical solution for each of the above predicted trajectories were compared to

errors in the solution for the scheme using exact trajectories, available in the case of the rigid body rotation

velocity field. A time step of Dt ¼ 0:025 was used in all runs, corresponding to average Courant numbers in
the range 1.5–5.

The implicit second-order mid-point method approximates the trajectory Eq. (3) as

D~XX ð~xxÞ ¼ ~VV ðð~XX ð~xx; t; tnÞ � 1
2
D~XX ð~xxÞÞ; tnþ1=2ÞDt: ð19Þ

Eq. (19) is solved iteratively for the displacement D~XX , by

D~XX ðkþ1Þð~xxÞ ¼ ~VV ðð~XX ðkÞð~xx; t; tnÞ � 1
2
D~XX ðkÞð~xxÞÞ; tnþ1=2ÞDt; ð20Þ

where ~VV is evaluated between mesh points using spatial interpolation. For testing purposes, the iterations

were continued until the trajectory changed by less than 10�5. However, in practice it is not recommended

to repeat the iteration procedure more than a few times due to efficiency considerations. The Runge–Kutta

methods use standard Runge–Kutta integration of Eq. (3).

Fig. 4 shows the L2-norm of error at the end of one full revolution of the cosine bell on different grids,

using the above methods. As expected, the fourth-order Runge–Kutta method was most accurate. The
implicit second-order mid-point method, which is widely used in weather forecasting codes, exhibits slightly

better accuracy than RK2.

When using the RK4 method, the total CPU cost per grid point per time step was only 0.23% and 0.06%

more than that for, respectively, the cheapest method (first-order Euler) and for the commonly used second-

order mid-point method (with iterations). Considering the accuracy of the RK4 method and its modest

cost, it was considered to be optimal for the present algorithm.

Fig. 3. L2-norm of error at the end of one full revolution, with various Gaussian quadrature formulae on different meshes for the 2-D

test problem. Fourty time steps were used for one revolution, with exact characteristic specification as described in text.
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It must be noted that with smaller time step sizes (for instance, Dt ¼ 0:0125, corresponding to average
Courant numbers of 0.75–2.5) all methods worked well; however for practical situations, we are primarily

interested in larger time steps, i.e. larger Courant numbers. As the time step size was increased, the su-

periority of the fourth-order Runge–Kutta method was more pronounced.

As a result of this investigation, the fourth-order Runge–Kutta method was adopted for later studies.

4.1.3. Effect of Courant number

The stability limitations of the method of characteristics are usually due to errors in the approximation

of the trajectories, specifically in the location of the departure points at the feet of the characteristic lines.

Fig. 4. L2-norm of error at the end of one full revolution on different meshes for different trajectory approximation methods for the 2-

D test problem. In all runs, a time step Dt ¼ 0:025 and 7 Gauss points were used. Legend: RK1–RK4 represent first through fourth-

order Runge–Kutta schemes and MP2 represents the second-order mid-point method.
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This effectively places a limit on the Courant number. This limit is, nonetheless, much less restrictive than
that imposed by Eulerian schemes.

To investigate the effect of Courant number on the overall accuracy of the scheme, several test cases were

done with various temporal resolutions ranging from Dt ¼ 0:003125 to 0.1, and with several spatial mesh
densities. Simulations were stopped at t ¼ 1, when the cone completed one full revolution around the

origin. The trajectories were approximated by the fourth-order Runge–Kutta method.

L2-norm errors calculated at t ¼ 1 for various temporal and spatial resolutions are consistent with the

error bound E < ððh2=uDtÞ þ hþ uDtÞ suggested by Pironneau [35], where u is a characteristic velocity
magnitude (Fig. 5). For the smallest time steps (Dt < 0:02) the error behavior is dominated by the h2=uDt
term, for intermediate time steps (0:02 < Dt < 0:08) the error is dominated by the spatial resolution h, and
for larger time steps (Dt > 0:08) the error is dominated by uDt.
Pironneau�s error bound relationship can be rewritten as

E ¼ h
c1
Cu



þ c2 þ c3Cu

�
ð21Þ

from which it is predicted that error normalized by h should be a function of Cu only. This prediction is

confirmed in Fig. 6, where we plot the L2-norm of the error vs. the Courant number (calculated at the center
of the cone). As the figure demonstrates the data approximately collapse onto a single curve. However, the

fit given by Eq. (21) is not perfect, with data scattering somewhat at the higher end of the Courant number

range. It is not clear why this is the case. Note that the deviation from the expected curve at large time steps

is more pronounced for coarse meshes, suggesting that the scatter could be due to mesh resolution effects

(i.e. the ratio of cone size to element size).

We conclude that for this scheme a Courant number in the range of 1.5–8 is the most efficient for this

problem, since it yields acceptable error while minimizing the number of required time steps. The Courant

number at which the minimum error is obtained is approximately Cu  3. This limit is much less restrictive
than that imposed by Eulerian schemes where either stability or accuracy reasons limit the Courant number

to about 1.

Fig. 5. L2-norm error for various temporal and spatial resolutions after one complete revolution of the cosine bell (2-D tests with

periodic boundary conditions). The coarsest mesh has 40 triangles per side (denoted as 40� 40), and the finest mesh is 130� 130.
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4.2. Typical two-dimensional results

Figs. 7 and 8 show representative results for a grid with 80 triangles on a side, and a time step of

Dt ¼ 0:025, corresponding to an average Courant number of Cuavg  3:5 on the domain. For this time step

Fig. 6. L2-norm of error, kEkL2 , divided by grid size, h, vs. Courant number for various temporal and spatial resolutions after one
complete revolution of the cosine bell (2-D tests with periodic boundary conditions). The data is least squares fit by E=h ¼
c1=Cuþ c2 þ c3Cu with coefficients c1 ¼ 0:68� 0:03 (mean� SD), c2 ¼ �0:39� 0:06 and c3 ¼ 0:09� 0:01.

Fig. 7. The computed scalar field after one complete revolution (2-D test case) with Dirichlet boundary conditions.
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size, 40 time steps are required for the cosine bell to complete one full rotation around the domain. The

CPU time for this configuration was about 0.03 s per grid point per time step on a Sun Ultra-1 workstation,

and the maximum memory required was about 0.5 kb per grid point. As seen in Figs. 7 and 8, the nu-

merical scheme replicates the exact scalar field very well, preserving the shape of the bell. The error field

Cexact � Ccomputed is almost symmetric, indicating that the scheme has good phase characteristics. The os-
cillations corresponding to the regions of steep gradients in the solution are localized and confined to those

regions. The maximum local error observed in these regions is about )0.21% at the margin of the bell. This

means that the numerical cone has widened by a very small amount, which reveals that the scheme suffers

from some numerical diffusion.

The error in the peak, defined as ðCcomputed;max � Cexact;maxÞ=Cexact;max, was about 0.015% at the end of the

simulation, which is very small and reconfirms that numerical diffusion is very low. At the end of the

simulation, the scheme lost about 0.001% mass (see Table 1). Considering the errors owing to roundoff and

those introduced while inverting the mass matrix, one can claim that this method has good mass conser-
vation performance. Numerical damping will cause loss of energy (see Table 1) even if mass is conserved.

Here, the numerical scheme suffered from less than 0.01% energy loss at the end of this advection process.

This simulation was carried out for up to 100 complete revolutions of the cone, and good results were

obtained. For example, the error field obtained with the present characteristic Galerkin scheme after 100

revolutions of the cosine bell over an 80� 80 mesh is compared in Fig. 9 with the corresponding error field
obtained with the characteristic Galerkin method using piecewise exact integration (Priestley [36]).

Priestley�s results were obtained from a simulation using exact trajectories, i.e. excluding the error due to

approximation of the characteristic lines, and at the same Courant number as in our case. From this figure

Fig. 8. The global error field after one complete revolution (2-D test case) with Dirichlet boundary conditions.

Table 1

Global conservation measures after one revolution

Formula Global conservation laws Computed/exactR
X cdX Mass conservation 0.999990R
X c2 dX Energy conservation 0.999900
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it can be seen that despite predictions to the contrary in the literature, the present scheme does not suffer
from instability problems.

It is evident in Fig. 9 that the error field in the present quadrature-based method is more localized than

that obtained with the piecewise exact integration characteristic Galerkin scheme. The methods are further

compared in Table 2 which gives a quantitative measure of the error exhibited by these two methods at the

end of a one-revolution simulation. The maximum error after one revolution with the present characteristic

Galerkin scheme was about half of that reported with piecewise integration characteristic Galerkin scheme.

The error in the peak after one full revolution in the present scheme was slightly less than half of that in the

piecewise integration scheme, while the L2-norm of error with the present scheme was 50% more than that
with the piecewise exact integration characteristic Galerkin scheme [36]. Taking all factors into account, we

conclude that the piecewise exact integration scheme and the present scheme demonstrate very similar error

performance. However, the piecewise exact method is more costly than the quadrature projection method.

More importantly, as previously noted, it is not easily extended to 3-D.

4.3. Typical three-dimensional results

Representative results are shown in Figs. 10 and 11 for a 64� 64� 64 grid with an average grid size
of h ¼ 0:03, and a time step of Dt ¼ 0:025, which required 40 time steps for one complete rotation of
the ‘‘cosine ball’’ around the domain. The average Courant number on the domain was about 2.5. The

Fig. 9. Local values of error after 100 revolutions over an 80� 80 grid with time steps of Dt ¼ 0:025 obtained with seven-point

Gaussian quadrature and RK4 trajectory approximation (left) and with piecewise exact integration and exact trajectories (right). Right

panel is taken from [36]. Both simulations were performed on an 80� 80 grid. The contour levels are the same in both plots.

Table 2

A comparison of errors exhibited by the present quadrature-based method and those by the piecewise-exact method

Piecewise exact projection Quadrature projection

Maximum error 0.0025 0.0014

Error in peak 0.005 0.002

L2-norm of error 0.0018 0.0024
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trajectories were integrated using the fourth-order Runge–Kutta method. An eleven-point Gaussian

quadrature was found to be appropriate for the RHS projection in 3-D. The CPU time for this configu-
ration was about 0.05 s per grid point per time step, and the maximum memory required was about 1.6 kb

per grid point.

Fig. 10. Horizontal slice (on Z ¼ 0 plane) of the computed scalar field after one complete revolution (3-D test case) on the 64� 64� 64
mesh in the presence of Dirichlet boundary conditions. The time step size was Dt ¼ 0:025.

Fig. 11. Horizontal slice (on Z ¼ 0 plane) of the error field after one complete revolution (3-D test case) on the 64� 64� 64 mesh in
the presence of Dirichlet boundary conditions. The time step size was Dt ¼ 0:025.
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The 3-D results were qualitatively similar to the 2-D results. Quantitatively, after one revolution the
maximum local error in the Z ¼ 0 plane was less than 0.8%, the error in the peak was about 0.8%, the lost

mass was about 0.001%, and the energy loss was about 0.004%. These results indicate that the performance

of the scheme is maintained in three dimensions.

5. Summary and conclusions

A 3-D characteristic Galerkin scheme for solving the linear advection equation was developed and
tested. The scheme uses Gaussian quadrature for projecting the information from the Lagrangian grid onto

the Eulerian grid. A variable time step technique was devised and implemented to treat the characteristic

lines that cross the domain inlet boundaries before finding their foot at the previous time level. Two efficient

algorithms were devised for searching within the unstructured finite element mesh to find the foot of the

characteristic. In order to characterize the scheme, numerical tests were performed on a 2-D implemen-

tation of the process. Testing the 2-D and 3-D versions of the scheme against benchmark solutions showed

encouraging results. The scheme exhibited good phase, accuracy and stability behaviour at large time steps.

The method is efficient if implemented wisely. Using Gaussian quadrature points for L2-projection of the
numerical information from the Lagrangian (departure) grid at the previous time step onto the Eulerian

grid at the current time step makes the scheme easily and efficiently extendible to three dimensions.

The quadrature projection method that we use in this work is similar to the technique proposed in the

context of the FV-ELLAM method [5,19,20], using structured 2-D and 3-D finite-volume cells. The FV-

ELLAM methods define the test (weighting) functions as unity over the volume during the advection time

step to satisfy the homogenous form of the adjoint of the advection equation for all ~XX and t. One difference
between our approach and the FV-ELLAM schemes, relates to the treatment of boundary conditions.

Traditionally, characteristic-based algorithms are applied to open boundary problems (e.g. in groundwater
applications) or to problems with periodic boundary conditions (like meteorological problems on a sphere).

Because of uncertainty as to how to handle integration points that backtrack into inflow boundaries,

the authors of the FV-ELLAM method use forward tracking [19,20]. As demonstrated in this work, the

characteristic-based schemes can be easily applied in problems with closed boundaries by stopping the

characteristic lines where they cross the inlet boundaries. In addition, our technique has been proven to be

effective for simulations in complex geometries using fully unstructured grids [24,26,27], and is therefore a

viable approach for treatment of advective-dominated transport problems.

Elemental searching (i.e. searching for an element that contains a certain point, namely the foot of a
characteristic) is another feature that has made the characteristic-based methods unpopular with un-

structured grids. This work shows that if the searching is done wisely, this procedure can be carried out

efficiently even with large Courant numbers.

Although the scheme is in theory stable for all Courant numbers, in practice we found that a Courant

number of about 3 is the best compromise between cost and accuracy. This limit is, of course, much less

restrictive than that imposed by Eulerian schemes. However, the error performance of the scheme (Fig. 6)

has several limitations. Most critically, care must be exercised when modeling an unsteady, real-world

problem, where there typically exists a spectrum of velocity magnitudes and grid sizes over the computa-
tional domain. In such a case, one must obtain, as a preprocessing step, an estimate of how the ratio of ~VV =h
varies on the domain and choose a suitable time step Dt so that the Courant number lies within an ac-
ceptable range for the elements in the computational domain.

Overall, the present characteristic Galerkin algorithm is a viable method for the solution of advection

problems using 3-D unstructured grids. In a subsequent paper [25], we show how this scheme can be

incorporated into a more general solver for the convection–diffusion equation in 3-D. We have fur-

ther demonstrated the viability of this boundary condition treatment through application of the present
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algorithm in the simulation of highly advection-dominated mass transport in an anatomically realistic
human right coronary artery [26], and in physiologically relevant axisymmetric and asymmetric arterial

stenosis [24,27].
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