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On the Constitutive Models for Heart Valve Leaflet Mechanics

ELI J. WEINBERG∗ and MOHAMMAD R. KAAZEMPUR-MOFRAD†,‡

Large-strain constitutive modeling of biological tissues has
grown enormously as a field in the past decade. This paper
investigates the viability of the existing models for describing
heart valve leaflet mechanics. The properties of the leaflet
tissue are discussed, and a variety of constitutive models
are addressed. Models based on continuum and unit cell ap-
proaches are highlighted as being suited to leaflet modeling.
Key words: heart valve; leaflet; constitutive; mechanics.

INTRODUCTION

In the past decade, finite element based computa-
tional modeling and mechanical analysis of heart valves
have greatly aided planning and evaluation of heart valve
surgery, design of bioprosthetic valve replacements, and
general understanding of healthy and abnormal cardiac
function. Such models must be based on an accurate de-
scription of the mechanical behavior of the valve material
under physiological conditions. Numerous constitutive
models have been developed to describe heart valve tissue
and other similar biological tissues. This paper addresses
the derivation of a variety of models and discusses their
applicability to heart valve tissue.

Basic Properties of Heart Valve Tissue

The basic physical properties of heart valve tis-
sue govern the assumptions that can be made in the
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formulation of a constitutive model. Heart valve tissue
consists of a fibrous tissue network, mainly collagen and
elastin, saturated with a fluid that is mostly water. SEM of
leaflet tissue shows that the fibrous network is wavy and
uniaxially aligned (see Fig. 1).

The aligned fibers of the leaflet tissue make the stress-
strain response highly anisotropic. Tensile testing (Billiar
and Sacks 2000) shows that the aortic leaflets are sig-
nificantly stiffer in the circumferential direction than the
radial direction, and similar results have been recorded
for mitral valve tissue (Clark, 1973). Data for mitral valve
tensile testing is shown in Fig. 2.

A material supported by uniaxially aligned fibers
can be described by a special case of anisotropy known
as transverse isotropy. In transverse isotropy, the material
has one preferred direction parallel to the fiber direction,
and the responses in every direction perpendicular to the
preferred direction are identical to each other.

The waviness of the fibers also significantly affects
the stress-strain response. Generally, less force is required
to stretch a wavy fiber than a straight fiber. At low strains,
the fibers in heart valve tissue are wavy, and the tissue
can be extended by relatively low stresses. As strains in-
crease, the fibers are straightened, and the stress required
to extend the tissue increases dramatically. This nonlinear
response is evidenced in Fig. 2, as the slope of the stress-
strain curve increases with increasing strain.

Water comprises between 60 and 70% of a collage-
nous tissue by weight (Weiss et al., 1996). This volume of
water appears to be tightly bound to the fibrous network,
as evidenced by fact that it is difficult to exude any signif-
icant amount of fluid by compression (Hvidberg, 1960).
Thus, models should consider the tissue to be nearly or
completely incompressible.

Since the tissue consists of a combination of solid
of fluid components, it would be natural to assume that
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Figure 1. SEM of tricuspid valve leaflet material. From Broom (1978),
showing characteristic aligned waviness.

the solid component would contribute an elastic response
to loading and the fluid component would contribute a
viscous response, so that the overall response would be
viscoelastic. Fung (1967, 1993) has shown, however, that
biological tissues can be preconditioned by repeatedly
loading and unloading the specimen. After a number of
cycles, the response will reach a steady state where that
involves one non-linear response for the loading phase
and a separate non-linear response for the unloading cy-
cle. Once this steady state has been reached, both phases
are insensitive to the loading rate: the viscous effect disap-
pears after preloading. A material with this response can
be treated as one hyperelastic material in loading, and a
separate material in unloading. Such behavior, known as
pseudoelasticity, has been shown to apply to heart valve
tissue (May-Newman and Yin, 1995).

A constitutive model for heart valve tissue must in-
corporate all of the features listed above: it should de-

scribe a pseudoelastic, incompressible, anisotropic, non-
linear material. While relatively few models have been
formulated specifically for heart valve tissue, a number of
models exist for biological soft tissues in general and for
similar tissues.

Constitutive Models

This section surveys a few different derivations
for the stress-strain behavior of heart valve and similar
tissues. These derivations include a range of information
about the structure of the tissue, from phenomological
models that include no information about the structure to
unit-cell models that are derived completely from network
structure.

Many constitutive models for biological tissues are
derived by extending theories developed for rubber defor-
mation. Rubber models apply generally to large-strain,
isotropic, hyperelastic materials, therefore extending
these models to include anisotropic, pseudoelastic behav-
ior creates models appropriate for biological tissues. The
essential concept of this class of theory is that the energy
density in the material can be determined as a function
of the strain state. Once the strain-energy function W is
known, the stress state can be determined by taking the
derivative of W with respect to a strain measure, such as

σ = ∂W

∂ε
, (1)

where σ the Cauchy (true) stress tensor and ε is the Green
strain tensor. The most common form used to determine

Figure 2. Uniaxial stress-strain data for fresh human mitral leaflet tissue From Clark (1973), showing highly nonlinear and anisotropic response.
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stresses for the materials considered here is

σ = −pI + 2F
∂W

∂C
FT , (2)

where F is the deformation gradient, C is the left
Cauchy-Green strain tensor, p is a Lagrange multiplier
to enforce incompressiblilty, and I is the identity tensor
(Holzapfel, 2001).

PHENOMOLOGICAL MODELS

A phenomological model is typically developed by
guessing either a form of the stress strain response or
of the strain-energy function. The resulting stress-strain
response is then fit to experimental stress-strain data.

A large-strain constitutive model can be formulated
by extension of one of the many well-known models for
linear elastic materials. Li et al. have created a model
for heart valve tissue by extending the linear transversely
isotropic model (Li et al., 2001). The stress-strain relation
for the linear transversely isotropic model is

σ = [E]ε, (3)

where the stiffness matrix [E] is a function of two Young’s
moduli Ex and Ey , two Poisson’s ratios Vxy and vyx , and a
shear modulus Gxy . Here the nonlinear material behavior
is accounted for by letting the Young’s moduli with an
effective strain ε̄,

ε̄ =
√

(εx − εy )2 + (εz − εy )2 + (εx − εz)2 + 3
2 (γxy

2 + γyz
2 + γxz

2)
√

2(1 + ν)
.

(4)

Ex and Ey are assumed to have exponential forms, and
fitting to uniaxial strain data gives:

Ex = 1927.2e9.827εx ,

Ey = 118.34e13.20ε̄ . (5)

with Ex >> Ey,Gxy can be calculated in the linear elastic
sense from

Gxy = Ey

2(1 + νxy)
, (6)

and the two Poisson’s ratios are assumed to be equal 0.45
at all strains for nearly incompressible tissue. This model
is reported to achieve a good fit with uniaxial data from
porcine aortic heart valve. This is the only model known
to the authors intended to model heart valve tissue by
extension of linear elastic theory.

Many models exist that involve assuming a strain-
energy function for the tissue. Based on observations
for rat mesentery, Fung and co-workers (Tong and Fung,
1974) proposed that the strain energy should be exponen-
tially related to the strain,

W = c

2
(eQ − 1), (7)

where c is a constant and Q is a function of the strain state
such as

Q = cijk; EijEkl, (8)

where all c’s are constants and Exy is the x − y term of
the Green strain.

A similar function can be written including only
planar tension terms

W = B0

[
exp

(
b1E

2
11

2

)
+ exp

(
b2E

2
22

2

)

+ exp

(
b3E11E22

2

)
− 3

]
, (9)

where B0, b1, b2, and b3 are constants. This function fits
well with canine pericardium biaxial data (Choi and Vito,
1990). When the coupling terms is removed to leave

W = c

2

[
exp

(
A1ε

2
11 + A2ε

2
22

) − 1
]
, (10)

where A1 and A2 are constants, only a poor fit could be
achieved with biaxial human aortic tissue data (Billiar and
Sacks, 2000).

TRANSVERSELY ISOTROPIC MODELS

The models in this section determine strain-energy
functions based on the assumption of transverse isotropy
and in terms of strain invariants. Transverse hyperelas-
ticity can be completely described by the three strain
invariants and two pseudo-invariants (Holzapfel, 2001).
The three basic invariants are

I1 = tr(C), I2 = 1

2

[
(trC)2 − tr(C)2

]
, I3 = det(C),

(11)
and the two pseudo-invariants are

I4 = N ·C ·N, I5 = N ·C2 ·N, (12)

where N is a tensor describing the local fiber direction.
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Stress-strain data suggests that the strain-energy
function of passive myocardium depends strongly on
I4 and I4, and is independent of the other invariants
(Humphrey and Yin, 1989). Thus, a subclass of trans-
versely isotropic materials is defined by I1 and α, where
α is the stretch in the fiber direction,

α2 = I4. (13)

The strain strain-energy function may be broken into two
independent isotropic and anisotropic contributions,

W = W1 + WA, (14)

where each term is represented by a Fung-like exponen-
tial,

W = WI + WA = c {exp[b(I1 − 3)] − 1}
+A

{
exp

[
a(α − 1)2

] − 1
}
. (15)

This function mimics the biaxial myocardium data rea-
sonably well (Humphrey and Yin, 1989).

Other functions of I1 and α have been proposed,
such as

W = c1(α − 1)2 + c2(α − 1)3 + c3(I1 − 3)

+ c4(I1 − 3)(α − 1) + c5(I1 − 3)2. (16)

This function was formulated to fit one specific set of data,
but also achieved fairly accurate predictions of biaxial data
that was not included in the formulation (Humphrey et al.,
1990).

A transversely isotropic strain-energy function can
be written with analogy to the exponential form of Eq. 7,

Q = c1(I1 − 3)3 + c2(α − 1)4. (17)

This equation achieved favorably agreed with biaxial data
from both mitral valve leaflets (May-Newman and Yin,
1998). It should be noted that this formulation requires
only three coefficients, c1 and c2 from Equation 20 and
c from Equation 7. The works described here have deter-
mined constants only for loading behavior of the tissue,
and not the unloading. A pseudoelastic model would have
different constants for the unloading phase.

ALIGNED FIBER MODELS

The models in this section take a variety of ap-
proaches to tie the overall tissue behavior to the behavior
of a single fiber or bundle of fibers. A strain-energy func-
tion or stress function may be proposed for a single fiber
or group of fibers, then geometric assumptions are used
to extrapolate the stress-strain or strain-energy model for
the whole tissue.

Again the strain-energy function can be broken into
components. In this case (Humphrey and Yin, 1987), it is
assumed that the fluid matrix, collagen, and elastin each
contribute independent terms to the strain-energy,

W = Wm +
∑

|Wc +
∑

|We, (18)

where Wm is the strain-energy function of the fluid matrix,
and Wc and We are the collagen and elastin components,
respectively. The fiber components must be summed to
represent fibers oriented in different directions. Elastin
behaves generally as a linear spring, so its behavior is
represented by

We = b[γ − ln γ − 1], (19)

where b is a constant and γ is the stretch ratio in the
direction of the elastin fiber, and represents the net effect
of the collagen fibers by

Wc = A{exp a(β − 1)2 − 1}, (20)

where A and a are constants and β the stretch ratio in the
direction of the collagen fiber. The summation of the fiber
strain energy terms for a transversely isotropic material is
evaluated as

W =
∑

Wc +
∑

We =
∫ π

0
(Wc + We) dφ, (21)

where ϕ represents an angle in the plane of the tissue. The
fluid matrix is assumed to contribute only a hydrostatic
pressure, which is incorporated into the Lagrange multi-
plier in Equation 2. This function was shown to fit pleura
data reasonably well (Humphrey and Yin, 1987).

Separate models have been proposed for collagen
and elastin fibers (Lanir, 1979). The force to extend an
elastin fiber is

Fe = Ke[λ − 1], (22)
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where Ke is the spring constant for an elastin fiber and λ

is the stretch ratio of the fiber. A crimped collagen fiber is
assumed to stretch with zero force until it is straightened,
and once it is straightened acts as a linear spring,

Fc

{
0, λ < λc

Kc[λ − λc], λ > λc,
(23)

where λc is the critical stretch needed to straighten the
fiber and Kc is the spring constant for a straightened
collagen fiber. This work also proposed that, rather than
calculating exactly when each collagen fiber reaches its
straightening stretch, a probability function can be used
to determine what percentage of fibers are straight for any
tissue strain state (Lanir, 1979). Subsequent models gen-
erally ignore the elastin component to model the network
entirely in terms of probabilistic collagen fibers (Lanir,
1982).

One such model based on the previous work repre-
sents the fiber stress-strain relationship with

σf (εf ) = K2

∫ εf

0
D(x)

εf − x

1 + 2x
dx, (24)

where σf and εf are the stress and strain in the fiber,
respectively, x is the variable of integration, and D(x) is
defined by a Gamma distribution,

D(x) = 1

βα�(α)
xα−1 exp

(
− x

χ

)
, (25)

where α and β are positive constants. The tissue stress-
strain relationship can then be found by

σ =
∫ π/2

−π/2
R(θ )σf (εf )[N ⊗ N ] dθ, (26)

where R represents the angular distribution of the fibers.
The fiber stress-strain relation can also be represented by

σf (εf ) = A[exp(Bεf ) − 1], (27)

where A and B are constants, and both Equation 24 and
Equation 27 have good fit and predictive ability for bovine
pericardium biaxial data (Sacks, 2003). Equation 27 has
been found to give a good fit and predictive behavior for bi-
axial aortic valve cusp samples (Billiar and Sacks, 2000).

UNIT-CELL MODELS

A common approach in the constitutive modeling
of rubber and elastomer materials is to derive the entire
model from knowledge of the material’s microstructure.
Entropy-based models are used to predict the behavior
of a single fiber and a unit-cell approach is used to
determine the bulk tissue properties. Many such mod-
els have been presented for modeling of rubber; for
a review the reader is directed to Boyce and Arruda,
2000. Rubber models are generally isotropic, so mod-
eling of heart valve tissue and the like requires extension
to anisotropy. Unit cell models can be readily extended
to orthotropy, and the derivation of one such model is
followed here.

The strain-energy equation for a single fiber can
be determined using a freely-jointed or wormlike chain
model. Using a Langevin freely-jointed chain model ap-
propriate for large strains gives the increase in strain en-
ergy from undeformed length R to deformed length r for
a chain of total length L,

�w = kB�N

[ (
ρ

N
βρ + ln

βρ

sinh βρ

)

−
(

P

N
βP + ln

βP

sinh βP

) ]
, (28)

where kB is Boltzmann’s constant, � is the absolute tem-
perature, N is the number of links in a single chain,
and ρ and P are the normalized chain lengths r/L and
R/L, respectively (Bischoff et al., 2002). β is defined by
the inverse Langevin function so that βρL−1(ρ/L)βR =
L−1(R/L). Using an eight chain unit-cell model, as shown
in Fig. 3, the strain energy needed to stretch the chains
within the cell is

wchains = w0 + 2kB�N

4∑
i=1

[
ρ(i)

N
βρ

(i) + ln
β(i)

ρ

sinh βρ
(i)

]
,

(29)
where i sums over half of the chains.

There also exists a strain energy due to repulsion
between the chains,

wrepulsion = 8kB�
√

NβP

a2 + b2 + c2
ln(λaλbλc), (30)

where a, b, and c are the dimensions shown in Fig. 3
and λa, λb, and λa are the stretches in the direc-
tions along the principal material axes. Assuming the
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Figure 3. Eight chain unit-cell model. From Bischoff (2002).

material is incompressible, the complete strain energy
function is given by

W =
∑
n/8

n

8
(wchain + wrepulsion), (31)

where n is the chain density. N can be directly related
to a, b, and c, so this model is applicable with four free
variables: n, a, b, and c. This function provides a good fit
to uniaxial skin data (Bischoff et al., 2002).

DISCUSSION

The main challenge in constructing a constitutive
model for heart valve leaflet tissue is that the tissues are
thin, and experimentally can only be rigorously tested in
states of planar tension. In normal heart valve function,
however, the leaflets are subjected to significant out-of-
plane and compressive stresses. The researcher’s task is
to create a model from two-dimensional data that will
predict three-dimensional behavior.

While heart valve tissue cannot be readily tested in
three-dimensions, results from other materials show that
the some of the models presented here apply in three-
dimensional states. Microstructural unit-cell models have
been verified in three-dimensional stress states in rub-
ber (Boyce and Arruda, 2000) and transversely isotropic
models have been similarly verified in artificial (Kominar
et al., 1995) and biological materials (DiSilvestro et al.,

2001). No such verification is known for the phenomo-
logical model described here (Equations 3–7), and some
models are not intended for use in three-dimensional stress
states: the simplifications of Fung’s exponential given in
Equation 9 and Equation 10, for example, include only
in-plane strain terms and are not intended for use in three
dimensions.

The unit-cell and transversely isotropic models
seem equally applicable to describing the behavior of
heart valve tissue, and researchers have achieved similar
results fitting either model to biaxial data. There are
some differences between the two classes of models
that may help in deciding which to use. Equation 17
has the advantage that its constants can be determined
in a relatively straightforward fashion through constant-
invariant tests, while finding the constants of a unit-cell
model requires fitting curves to multiple sets of data. a
unit-cell model includes data on the microstructure of
the material, and therefore may be preferred when the
microstructural features are of interest.

There are a few important effects that none of these
models incorporate. First, heart valve leaflets are com-
posed of three layers known to have different mechanical
properties from each other (Vesely and Noseworthy, 1992)
while all of these models assume that the material is ho-
mogonous through the thickness. A better model would
either include the three different layers as one laminated
body or provide three separate regions, each with a differ-
ent constitutive model. All three of the layers are struc-
turally similar, so the model for each layer can be in the
same form as the homogenous models shown in this paper.
Moreover, while the tissue is known to be pseudoelastic
and have significantly different loading from unloading
curves, all of the models here either give only the loading
curve of one general curve.

CONCLUSIONS

We have reviewed a number of various models pro-
posed for heart valve leaflet or similar biological tissue. Of
these, the unit-cell microstructural models and the trans-
versely isotropic models are most applicable to describing
a general three-dimensional stress-strain state. The sim-
plified transversely isotropic models, formulated in terms
of two strain invariants, are most easily fit to biaxial exper-
imental data. The unit-cell models cannot be fit to data as
easily, but capture more of the material’s microstructure.
Either of these models could be significantly improved
by including the layered characteristic of heart valve tis-
sue and by providing separate curves for the loading and
unloading phases.
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