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Abstract

This paper presents a shell finite element formulation appropriate for simulating the heart valve leaflet mechanics, including three-

dimensional (3D) stress and strain effects. A 4-node mixed-interpolation shell is formulated in convected coordinates. This shell

model is made capable of handling arbitrary 3D material models by use of an algorithm that satisfies the shell stress assumption at

every element integration point. A method for tracking the fiber direction is incorporated. The resulting shell element operates under

the same conditions as a standard 4-node shell element with 5 degrees of freedom per node, but extends the modeling capabilities to

handle large-deformation and anisotropic behavior.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of finite element simulations of dynamic
heart valve behavior have been published (see review in
Weinberg and Kaazempur-Mofrad, 2005a). Material
and element formulations used in these simulations
include a membrane element with structural material
(Einstein et al., 2004), nonlinear elastic shell (Votta et
al., 2002), linear elastic solid (Hart et al., 2003), and
linear elastic shell (Kunzelman et al., 1993). The authors
are not aware of any work that includes the 3D stress
state and accounts for large-deformation behavior,
particularly through-thickness strain. The aim of this
paper is to formulate an element that accurately
describes the large-deformation 3D stress–strain beha-
vior of mitral valve leaflet tissue and readily fits within
the setting of existing finite element software.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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The material comprising the mitral valve leaflets is
considered to be hyperelastic, incompressible, and
transversely isotropic (May-Newman and Yin, 1998).
One way to implement this description of such a
material in the finite-element setting is to use 3D
elements with a mixed pressure-displacement formula-
tion (Weinberg and Kaazempur-Mofrad, 2005b). How-
ever, accurate results of the bending behavior require a
high-order element and fine meshing that exert formid-
able computational expense. To handle this simulation
more efficiently, we propose here a shell element
formulation that includes the 3D constitutive material
model.

In large-deformation shell calculations, the through-
thickness strain contributes significantly to the stress
response and stiffness tensor. This strain cannot be
calculated using the standard interpolations used for
other strains, but a variety of ways to calculate the
through-thickness strain have been described. 3D shell
elements are attractive, in that they generally do not
require manipulation of the material model to fit shell
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stress assumptions (Chapelle et al., 2004; Sze et al.,
2004). Methods to incorporate a 3D material model into
a conventional shell by use of an extensible normal
vector have received much attention (Betsch et al., 1996;
Simo et al., 1990; Basar et al., 2003). A simpler method
to achieve the same has been proposed by Klinkel and
Govindjee (2002). Both conventional shell methods are
expected to be cheaper than the 3D shell in our case. The
3D shell model will require significantly more nodes
than a conventional shell, particularly requiring multiple
nodes through the thickness to represent bending
behavior. Additionally, for an incompressible material
like that of mitral leaflet tissue, the 3D shell model may
require the added complexity of a mixed pressure-
displacement formulation (Sussman and Bathe, 1987)
that the conventional shell will not. We have chosen to
use the latter shell method on the basis that it is more
computationally efficient than methods involving the
extensible normal (Klinkel and Govindjee, 2002) and
that, unlike methods with an extensible normal, it does
not require additional degrees of freedom (DOF)
compared to the standard 4-node shell element with 5-
DOF per node commonly found in finite element
software.

A 4-node quadrilateral with mixed interpolation of
the transverse strains is currently accepted as the most
cost-effective shell (Bathe, 1996). This shell is imple-
mented (Dvorkin, 1984) and the local plane stress
algorithm of Klinkel and Govindjee (2002) is used to
incorporate the 3D material models. We define a fiber-
aligned coordinate system, which allows simple interfa-
cing between anisotropic material calculations and plane
stress algorithm. As a demonstration, an existing
constitutive material equation leaflet tissue (May-New-
man and Yin, 1998) is applied and numerical results are
shown to match in-plane analytical results. A test case is
shown demonstrating function of the element and
influence of fiber direction.
2. Methods

In this section, we first outline the equations used in
the standard 4-node shell element with 5-DOF per node,
known as MITC4 element. Following that, we describe
methods for incorporating the fiber-aligned coordinate
system and through-thickness strain calculation into this
shell element.
2.1. Continuum mechanics and shell definitions

The underlying equations for the MITC4 shell
element are standard large-deformation solid mechanics
and shell equations. The deformation gradient is
denoted as

F ¼
qx

qX
, (1)

where X is the original (undeformed) configuration and
x is the deformed configuration.

The shell calculations are performed in the Green–
Lagrange strain tensor,

e ¼ 1
2
ðFT � F � IÞ, (2)

where I is the identity tensor.
The right Cauchy–Green deformation tensor is

C ¼ FT � F ¼ 2eþ I , (3)

the strain invariants in terms of C are

I1 ¼ trC ,

I2 ¼
1
2
ððtrCÞ2 � trC2

Þ,

I3 ¼ detC , ð4Þ

and the Jacobian is J ¼
ffiffiffiffiffi
I3
p

. Transverse isotropy is
incorporated into the model by introducing a vector that
defines the preferred fiber direction of the material. De-
noting the vector as N, the stretch in the fiber direction is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � C �N
p

, (5)

and two pseudo-invariants can be defined in terms of the
right Cauchy–Green strain (Spencer, 1972):

I4 ¼ N � C �N ¼ a2,

I5 ¼ N � C2
�N . ð6Þ

The stress state is calculated from the deformation
state based on a strain energy function, W,

S ¼
qW

qe
¼ 2

qW

qC
, (7)

where S is the 2nd Piola–Kirchoff stress tensor. The
material constitutive tensor is

C ¼
q2W

qe2
¼ 4

q2W

qC2
. (8)

The three invariants described in Eq. (4) are recognized
to describe isotropic hyperelasticity. Spencer (1972) has
shown that the full set of five invariants, defined in Eqs. (4)
and (6) can be used to describe the strain-energy function
of transversely isotropic hyperelasticity.

The 4-node shell element with 5-DOF per node,
known as the MITC4, is described in convected
coordinates and uses mixes interpolation of the trans-
verse strains to avoid locking (Dvorkin, 1984; Dvorkin
and Bathe, 1984). Here we outline the basis of this
formulation. In the global Cartesian coordinate system
(e1, e2, e3), the coordinates (x1, x2, x3) of a particle
having natural shell coordinate (r1, r2, r3) is

txi ¼ hk
txk

i þ
r3

2
takhk

tV k
ni, (9)



ARTICLE IN PRESS
E.J. Weinberg, M.R. Kaazempur Mofrad / Journal of Biomechanics ] (]]]]) ]]]–]]] 3
where xk is the global position of node k, Vn is the
director vector at node k, hk(r1, r2) is the interpolation
function corresponding to node k, tak is the thickness at
node k measured in the direction of Vn. We allow the
thickness tak to vary in time (Dvorkin et al., 1995) both
due to changes in the physical shell thickness and due to
the rotation of Vn. Throughout, the left superscript t

refers to the time and the right subscript i refers to the
component in the xi direction. Local orthogonal vectors
are defined:

0Vk
1 ¼

e2 �
0Vk

n

je2 � 0Vk
n j
,

0Vk
2 ¼

0Vk
n �

0Vk
1, ð10Þ

and the rotation of these vectors in time is achieved by
rotation matrix (Argyris, 1982).

The displacement tui and incremental displacement ui

are

tui ¼ hk
tuk

i þ
r3

2
takhkð

tV k
ni �

0Vk
niÞ,

ui ¼ hkuk
i þ

r3

2
takhkð�

tVk
2iak þ

tVk
1ibÞ, ð11Þ

where a and b are the rotational DOF. Covariant base
vectors are given by

tgi ¼
qtx

qri

(12)

and the contravariant base vectors tgi are calculated to
satisfy tgi

tgi ¼ dij. The Green–Lagrange strains are
calculated in the covariant system,

t~eij ¼
1
2
ðtgi �

tgj �
0gi �

0gjÞ, (13)

where the tilde overbar denotes values measured in the
covariant system.

The Green–Lagrange strains are transformed from
the covariant system to the Cartesian local,

êij ¼ ð
0gi � têmÞð

0gj � t ênÞ
t~emn. (14)

The constitutive material tensor in the local Cartesian
coordinate system is denoted Ĉ, which contains the shell
assumption of zero stress in the through-thickness
direction. This tensor may be calculated as in Eq. (8)
using the Green–Lagrange strain in Cartesian coordi-
nates (Eq. 14). The constitutive tensor is made to relate
the incremental covariant strains to the incremental
contravariant stresses by the transformation:

~C
ijkl
¼ ðtgi � êmÞð

tgj � ênÞð
tgk � êoÞð

tgl � êpÞĈ
mnop

. (15)

The stresses are calculated in the local Cartesian
coordinates as in Eq. (7), then transformed to the
covariant coordinates,

~S
ij
¼ ðtêm �

tgiÞðtên �
tgjÞŜmn. (16)

All strain components are computed in the standard
manner (Bathe, 1996), except for the transverse shear
strains which are found using separate interpolations to
avoid locking:

~e13ðr1; r2; r3Þ ¼
1

2
ð1þ r2Þ~e13

����
A

þ ~e13ðr1; r2; r3Þ ¼
1

2
ð1� r2Þ~e13

����
C

,

~e23ðr1; r2; r3Þ ¼
1

2
ð1þ r1Þ~e23

����
D

þ ~e13ðr1; r2; r3Þ ¼
1

2
ð1þ r1Þ~e23

����
B

, ð17Þ

where A is the location (r1 ¼ 0, r2 ¼ 1, r3 ¼ 0), B is
(r1 ¼ �1, r2 ¼ 0, r3 ¼ 0), C is (r1 ¼ 0, r2 ¼ �1, r3 ¼ 0),
and D is (r1 ¼ 1, r2 ¼ 0, r3 ¼ 0).

In a total Lagrangian formulation with convected
coordinates, the linearized equation of motion isZ

0V
0
~C

ijkl
0 ~ekld0 ~e0ij dV þ

Z
0V

t
0
~S

ij
d0 ~Z0ij dV

¼ tþDt<�

Z
0V

t
0
~S

ij
d0 ~e0ij dV , ð18Þ

where ~eij and ~Zij are the linear and nonlinear parts of the
Green–Lagrange strain components ~eij (Dvorkin and
Bathe, 1984). All terms are calculated using the above
definitions .

2.2. Fiber-aligned coordinate system

We introduce a particular Cartesian system for the
current application. In heart valve leaflet tissue, the fiber
direction lies in the element midplane (May-Newman
and Yin, 1998). First the initial fiber direction 0N is
defined in global coordinates and transformed in time,
to give tN, by standard vector transform (Bathe, 1996).
In heart valve leaflet tissue, the fiber direction lies in the
plane of the leaflet (May-Newman and Yin, 1998),
therefore we assume that the fiber direction lies parallel
to the element mid-plane. We define a local fiber-aligned
Cartesian coordinate system ê by

tê1 ¼
tN

jtN j
; tê3 ¼

tg1 �
tg2

jtg1 �
tg2j

; tê2 ¼
tê3 �

tê1, (19)

where the hat overbar denotes quantities measured in
this system. The first direction of this system is parallel
to the fiber direction, and the third direction is parallel
to the through-thickness direction. This coordinate
system is very convenient to use in the current
application, as it is the only Cartesian system needed
for both the material-based calculations and the
following shell stress calculations. The material stress
and tangent tensor calculations (Eqs. (7) and (8)) are
performed in the ê coordinate system with the fiber
direction simplyN̂ ¼ ½1 0 0� at all times, and the plane-
stress algorithm described below is performed with the
through-thickness direction simply parallel to tê3.
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2.3. Local plane– stress algorithm for calculation of

thickness, stresses and constitutive tensor

In the MITC shell formulation, the stresses and
material stiffness tensor needed to compute the finite
element matrices must reflect the shell stress assumption
of zero through-thickness stress. Klinkel and Govindjee
(2002) provide a simple, rigorous method for incorpor-
ating an arbitrary 3D material model into a shell
element. They refer to this method as the local plane
stress algorithm. The essence of this method is that the
standard 5-DOF per node shell does not provide a way
to interpolate the through-thickness strain. Instead, this
method calculates the through-thickness strain at each
integration point, so that the shell stress assumption is
satisfied, and then calculates the stresses and material
stiffness tensor needed for the finite element matrices.
Additionally, the thickness tak in the direction of Vn is
updated by running the local plane stress algorithm at
each node.

Here we outline the necessary steps of the algorithm.
For a full discussion of this method, see Klinkel and
Govindjee, 2002. In this method, the stress vector, strain
vector, and stiffness tensor are partitioned:

qŜm

qŜz

" #
¼

ĈmmĈmz

ĈzmĈzz

" #
qêm

qêz

" #
, (20)

where, for the shell, we have the definitions

Ŝm ¼ ½Ŝ11Ŝ12Ŝ13Ŝ22Ŝ23�
T; Ŝz ¼ Ŝ33. (21)

The stress, strain, and stiffness components here are
those in the fiber-aligned system ê defined by Eq. (19).
The following are the steps of the plane stress algorithm
incorporated into the shell model. At each time step, this
algorithm is run at each integration point to get the
stress Ŝ and stiffness Ĉ , and is run at each node to
update the thickness tak.
1.
 The Green–Lagrange strains ê, not including the
through-thickness strain, are calculated in the local
Cartesian system.
2.
 An initial guess is made for the through-thickness
strain ê33. We use the value of ê33 from the previous
converged iteration for this guess.
3.
 The second Piola–Kirchoff stresses Ŝ and material
stiffness tensor Ĉ are calculated by applying Eqs. (7)
and (8), respectively to the strain energy function (Eq.
(10)), with the fiber direction N̂ ¼ ½1 0 0�.
4.
Table 1

Coefficient values for mitral valve tissue

c0 (kPa) c1 c2

Anterior 0.399 4.325 1446.5

Posterior 0.414 4.848 305.4
If jjŜzjj is larger than a chosen tolerance, the through-
thickness strain is updated by

êiþ1
z ¼ êi

z �
Ŝ

i

z

Ĉ
i

zz

, (22)

and the method is returned to step 3. If the jjŜzjj is
smaller than a chosen tolerance, the algorithm
continues to step 4. The converged value for êz is the
strain in the direction perpendicular to the shell
midsurface, from which the change in thickness is
directly found. At each node, the thickness for the
next timestep tþDtak is found by projecting the
physical thickness on the director vector Vn.
5.
 With Ŝz ¼ 0, the stiffness matrix can be condensed
using

Ĉcondensed ¼ Ĉmm �
1

Ĉzz

ĈmzĈzm

� �
. (23)
6.
 A row and column of zeros are inserted into Ĉcondensed

to represent the through-thickness direction, yielding
the stiffness matrix with shell assumption Ĉ in the
local Cartesian system. At this step, the stresses Ŝ are
the stresses in the local fiber-aligned Cartesian
system, with the through-thickness stress equal to
zero within the chosen tolerance.

The stiffness tensor is then transformed to the natural
shell coordinate system; the stresses are transformed to
the covariant system (Eqs. (15) and (16)). Thus the
stiffness tensor and stresses from a 3D constitutive
model are incorporated into our shell.

2.4. Constitutive material model

To demonstrate this shell we use a strain-energy
function that has previously been determined for mitral
valve leaflet tissue through biaxial testing (May-New-
man and Yin, 1998),

W ðI1; I4Þ ¼ c0fexp½c1ðI1 � 3Þ2 þ c2ðI
1=2
4 � 1Þ4� � 1g,

(24)

with one set of constants for the anterior leaflet and one
set for the posterior (Table 1).

As in our previous work (Weinberg and Kaazempur-
Mofrad, 2005b), a neo-Hookean term is added to avoid
the zero matrix at low strains and a volumetric term is
added to enforce incompressibility.

W ðI1; I4Þ ¼ c0fexp½c1ðI1 � 3Þ2 þ c2ðI
1=2
4 � 1Þ4� � 1g

þ cPDðI1 � 3Þ þ k
ffiffiffiffiffi
I3

p
� 1

� �2
, ð25Þ

where cPD is a constant chosen to be very small
compared to the other effective material moduli and k
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is the compressibility, chosen to be a value much higher
than any other effective material moduli. This term is
the same as that used in the pressure-displacement
formulation (Sussman and Bathe, 1987). In this method,
pressure does not need to be separately calculated; the
full stress state will be fully calculated by the local plane
stress algorithm. The pressure can be calculated from
that stress state if desired, but is not required in the
numerical method. Thus, the deviatoric and volumetric
responses do not have to be isolated from each other.
The rest of the modifications (conversion of modified
invariants) to the strain-energy function performed in
the mixed formulation (Weinberg and Kaazempur-
Mofrad, 2005b) are not necessary.
Fig. 2. Numerical and analytical results for equibiaxial stretching of

posterior leaflet.

Fig. 3. Geometry of cylindrical test case.
3. Numerical tests and results

We have implemented our element in the commer-
cially available finite element software ADINA (Water-
town, MA), using 2� 2� 2 Gauss integration for all
terms. We first compare the predictions of our model to
planar analytical results. Equibiaxial stretch was applied
to the element with the material models for anterior and
posterior leaflets. The range of deformations here is the
same as that in the May-Newman and Yin data (1998),
which reflects the range of deformations expected in
physiological leaflet function. The numerical results (see
Figs. 1 and 2) match the analytical within the limits of
numerical accuracy.

To examine the behavior in mixed stress states
(membrane and bending stresses), we predict the
behavior of a cylindrical arch structure shown in
Fig. 3, with large displacements applied. Material
properties of the anterior and posterior leaflet are used
with constants cPD ¼ 1� 10�5 and k ¼ 1� 105, and the
initial fiber direction is defined running either parallel to
the axis of the cylinder or along the circumference of the
cylinder. Dimensions are typical of a piece of leaflet
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Fig. 1. Numerical and analytical results for equibiaxial stretching of

anterior leaflet.
tissue: length of arch of 2.0 cm, height of arch of 0.5 cm,
initial thickness of 1.0mm. In all cases the simulation
converged with an applied mid-point displacement up to
0.6 cm. Plots of the reaction force versus the applied
displacement are shown in Fig. 4.
4. Conclusions

A shell element appropriate for simulating the motion
of heart mitral valve leaflets has been presented. This
element extends the conventional MITC4 shell element
to describe fiber-aligned anisotropy and large deforma-
tion. The shell element uses the same DOF as the
conventional element, and thus can be readily incorpo-
rated into existing finite element software.

The goal is to create a shell element that rigorously
predicts the 3D stress state (with the shell stress
assumption) of a mitral heart valve leaflet. In this
paper, we have used an existing strain-energy function
derived and verified in biaxial testing. Simulation of
leaflet motion would require a constitutive model
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Fig. 4. Force versus displacement plots for cylindrical test case.

E.J. Weinberg, M.R. Kaazempur Mofrad / Journal of Biomechanics ] (]]]]) ]]]–]]]6
verified also in bending and shear. We see the develop-
ment of this shell element as a step towards determining
such a constitutive model.

In this paper, we have extended the MITC4, 5-DOF
per node shell element to describe large deformation and
transversely isotropic mechanical behavior. This ex-
tended element, by using the same DOF as the
conventional 4-node shell, can readily be used in finite
element codes that already incorporate a 4-node shell,
and does not impose the large increase in computation
cost associated with adding DOF. This element repre-
sents a radical savings in computational expense over
our previous method for representing the 3D deforma-
tion state, which was using a 27-node mixed-interpola-
tion solid element. Promising future applications of this
element include refinements of the leaflet constitutive
models, finite element simulations of mitral valve
function, and extension to include the layered histology
of the leaflet.
References

Argyris, J.H., 1982. An excursion into large rotations. Com-

puter Methods in Applied Mechanics and Engineering 32,

85–155.

Basar, Y., Hanskotter, U., et al., 2003. A general high-order finite

element formulation for shells at large strains and finite rotations.

International Journal for Numerical Methods in Engineering 57,

2147–2175.

Bathe, K.J., 1996. Finite Element Procedures. Prentice-Hall, Engle-

wood Cliffs, NJ.

Betsch, P., Gruttmann, F., et al., 1996. A 4-node finite shell element for

the implementation of general hyperelastic 3D-elasticity at finite
strains. Computer Methods in Applied Mechanics and Engineering

130, 57–79.

Chapelle, D., Ferent, A., et al., 2004. 3D-shell elements and their

underlying mathematical model. Mathematical Models and Meth-

ods in Applied Sciences 14 (1), 105–142.

Dvorkin, E.N., 1984. On nonlinear finite element analysis of shell

structures. Ph.D. Thesis, Department of Mechanical Engineering,

Massachusetts Institute of Technology.

Dvorkin, E.N., Bathe, K.J., 1984. A continuum mechanics based four-

node shell element for general non-linear analysis. Engineering

Computations 1, 77–88.

Dvorkin, E.N., Pantuso, D., Repetto, E.A., 1995. A formulation of the

MITC4 shell element for finite strain elasto-plastic analysis.

Computer Methods in Applied Mechanics and Engineering 125,

17–40.

Einstein, D.R., Kunzelman, K.S., et al., 2004. Haemodynamic

determinants of the mitral valve closure sound: a finite element

study. Medical and Biological Engineering and Computing 42,

832–846.

Hart, J.D., Peters, G.W.M., et al., 2003. A three-dimensional

computational analysis of fluid-structure interaction in the aortic

valve. Journal of Biomechanics 36, 103–112.

Klinkel, S., Govindjee, S., 2002. Using finite strain 3D-material models

in beam and shell elements. Engineering Computations 19 (8),

902–921.

Kunzelman, K.S., Cochran, R.P., et al., 1993. Finite-element analysis

of mitral-valve pathology. Journal of Long-Term Effects of

Medical Implants 3 (3), 161–170.

May-Newman, K., Yin, F.C.P., 1998. A constitutive law for mitral

valve tissue. Journal of Biomechanical Engineering 120, 38–46.

Simo, J.C., Rifai, M.S., et al., 1990. On a stress resultant geometrically

exact shell model. Part IV: variable thickness shells with through-

the-thickness stretching. Computer Methods in Applied Mechanics

and Engineering 81, 91–126.

Spencer, A.J.M., 1972. Deformations of Fibre-Reinforced Materials.

Clarendon Press, Oxford.

Sussman, T., Bathe, K.J., 1987. A finite-element formulation for

nonlinear incompressible elastic and ineslastic analysis. Computers

and Structures 26 (1–2), 357–409.



ARTICLE IN PRESS
E.J. Weinberg, M.R. Kaazempur Mofrad / Journal of Biomechanics ] (]]]]) ]]]–]]] 7
Sze, K.Y., Zheng, S.J., et al., 2004. A stabilized eighteen-node solid

element for hyperelastic analysis of shells. Finite Elements in

Analysis and Design 40, 319–340.

Votta, E., Maisano, F., et al., 2002. 3-D computational analysis of the

stress distribution on the leaflets after edge-to-edge repair of mitral

regurgitation. Journal of Heart Valve Disease 11 (6), 810–822.
Weinberg, E.J., Kaazempur-Mofrad, M., 2005a. On the constitutive

models for heart valve leaflet mechanics. Cardiovascular Engineer-

ing 5 (1), 37–43.

Weinberg, E.J., Kaazempur-Mofrad, M., 2005b. A large-strain finite

element formulation for biological tissues with application to

mitral valve mechanics. Journal of Biomechanics, in press.


	A finite shell element for heart mitral valve leaflet mechanics, �with large deformations and 3D constitutive material model
	Introduction
	Methods
	Continuum mechanics and shell definitions
	Fiber-aligned coordinate system
	Local plane-stress algorithm for calculation of thickness, stresses and constitutive tensor
	Constitutive material model

	Numerical tests and results
	Conclusions
	References


