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Abstract—Stress fibers are band-like features that form with
sarcomere-like actin and myosin arrangement between cell
regions, resisting myosin contractility. We consider three
aspects of stress fiber formation: (1) they form by cytoskeletal
actin–myosin interaction when myosin contractile forces are
resisted, (2) they propagate in a band-like manner, and (3)
they maintain a level of stress and material continuity with
the cytoskeleton. This suggests that any description of myosin
force should capture the band-like propagation of stress fibers
within the constraints of a continuum model. Recent studies
describe myosin force as increasing proportional to the
cytoskeletal resistance in that direction, but do not capture
the band-like propagation of myosin stresses in a continuum.
While the spreading of myosin stresses in continuum models
is commonly attributed to the elliptic nature of continuum
equations, we show that it comes from an incomplete
description of the myosin force. Qualitative observations of
cytoskeletal actin–myosin interaction indicate the interaction
to be ‘zipper-like’; myosin contractile forces get transmitted
by bending actin filaments in directions away from that of the
cytoskeletal resistance. A simple coarse-grained implementa-
tion of the lateral myosin forces that arise from the zippering
action reproduces band-like stress propagation within a
continuum model for the first time. This model also shows
actin packing into the stress channel and its propagation
along the edge for square and triangular constrained cells;
features not captured earlier. Physically, the lateral contrac-
tile forces prevent stress spreading by balancing perpendic-
ular shear forces that arise when stress channels through a
continuum. Mathematically, these forces render the contin-
uum stress equation hyperbolic. This paper presents a
theoretical argument, based on continuum mechanics prin-
ciples, that it is the zippering actin–myosin action that allows
for band-like stress fiber propagation within a coarse-grained
cytoskeletal continuum, and that any visualization of the
cytoskeletal stress field should account for lateral contractile
forces accompanying the much-acknowledged contractile
force along a stress fiber.
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INTRODUCTION

Background

Early in the 1970s, prominent bundles of actin fila-
mentswere identified in the cytoplasmof stationarynon-
muscle cells in culture and in endothelial cells under
shear stress.6,24,50 Called stress fibers, the actin bundles
were found to be contractile7,36,41 and housing myosin
filaments,22,81 characteristics reminiscent of muscle
sarcomeres. Subsequent studies showed that the mac-
romolecular organization of stress fibers was similar to
that of sarcomeres in many ways—the actin filaments
were in parallel arrangement with filament polarity
alternating alongside3,67; a lateral spacing of 8–12 nm
between the actin filaments allowed for parallel, bipolar
myosin filaments to situate in-between72; and themyosin
head moved toward the positive pole of the actin
filaments during a power-stroke,77 producing a net
contraction because of the alternating polarity
arrangement. Themyosin in stress-fibers,myosin II, was
found to be a genetic isoform of the myosin II in sar-
comeres.54 While the two myosins differed in details of
filament assembly, regulation and stroke size,20 they
were still found to be functionally interchangeable.45,58

Also, a similar group of proteins was found to control
the arrangement and interaction of actin and myosin in
both stress fibers and sarcomeres. Examples of these
proteins are a-actinin, filamin, troponin, caldesmon and
tropomyosin.27,43,48,49,68,82 On the other hand, there are
some key differences between stress fibers and sarco-
meres. Notably, stress fibers do not bear the strict order
and periodicity typical of muscle sarcomeres.60,62,66 For
instance, myosin and a-actinin are not uniformly dis-
tributed along a stress fiber; the myosin concentration is
greater toward the periphery of a stress fiber, whereas
the a-actinin concentration is greater in the central
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regions.46,62 As a result, the contraction of a stress fiber
is not uniform; there is shortening in the peripheral
region of the stress fiber, accompanied by simultaneous
stretching in the central region.62 Therefore, while the
many similarities between stress fibers and sarcomeres
reflect a similar mechanism of actin–myosin contractil-
ity for the two, their differences strongly suggest that
stress-fibers are not pre-determined structures like sar-
comeres. Rather, the stress fibers arise by rearrangement
of the disordered actin cytoskeleton under the contrac-
tile action of myosin, and they evolve continually as the
constraints on myosin contractility change with cell
migration and external force.

Stress fibers form by cytoskeletal actin–myosin
interaction when cytoskeletal contractility is resisted.
For instance, stress fibers are more pronounced in rigid
substrates than soft substrates.29,59 They typically form
between strong substrate attachments called focal
adhesions at which myosin contractility is resisted.7–9

The fibers also form along the direction of the external
forces and substrate stretch, which would be the
direction of cytoskeletal resistance.25,31,44,75

Stress fibers propagate through the cell in a band-
like structure. The ability of a cell to form a stress fiber
that focuses myosin contractility along a direction of
resistance has many functional implications. It allows
the cell to stiffen itself in a particular direction to
protect against excess stress and strains in that direc-
tion. It also allows the cell to scout the matrix rigidity
and migrate in the direction of increasing rigidity.53,65

Changes in stress fiber patterns, be it due to external
forces or strain, lead to changes in cell shape and ori-
entation.21,47,61 Also, the band-like propagation of
myosin contractility allows the cell to transmit forces
across large distances within itself, precisely and
without dissipation.5,13,33,57

The band-like nature and the systematic recruitment
of proteins for stress fiber assembly9,38,42,60,64 may
suggest that stress fibers are discrete structures, inde-
pendent of the surrounding actin cytoskeleton. How-
ever, a number of experimental observations indicate
that a level of material and stress continuity exists
between the stress fibers and the surrounding actin
cytoskeleton. For instance, images of cytoplasmic flow
in keratocytes show cytoskeletal actin being com-
pressed into the stress fiber.69,73 Hirata et al.31 showed
that quantum-dot labeled actin filaments in cell lamella
follow a definite centripetal trajectory into stress fibers.
The directed nature of the trajectory cannot be
explained by random diffusion, but only by some
coarse-grained material continuity. Wang79 showed
that as a cell migrates and continually changes its
contacts with the matrix, the existing stress fibers rea-
lign into the direction of migration. This is possible
only if the forces within the stress fibers were to some

extent continuous with the stresses in the rest of
the cytoskeletal matrix. Note that by stresses within
the stress fibers and cytoskeletal matrix, we refer to the
contractile stresses of myosin balanced by the tensile
resistance of the actin network.

In this paper we attempt to reconcile three aspects
of stress fibers: (1) stress fibers form by cytoskeletal
actin–myosin interaction when myosin contractility is
resisted, (2) they propagate in a band-like manner, and
(3) they maintain a level of stress and material conti-
nuity with the cytoskeletal matrix. The third aspect
suggests that, at a coarse-grained level, the principles of
continuum mechanics should govern the stress and
strain transfers involved in stress fiber formation.
Therefore, combining the three aspects, we require that
a correct description of cytoskeletal myosin contrac-
tility should capture the band-like propagation of stress
fibers within the constraints of a continuum model.

To our knowledge, there is only one continuum
model of cell contractility that attempts to capture the
formation of stress fibers and that describes the myosin
contractile force as increasing proportional to the
cytoskeletal resistance.18,19 This description of myosin
contractile force is intuitive and is validated by
experimental observations which show the stiffness of
a cell increasing proportional with the stiffness of the
resisting substrate.70 It is also a version of the Hill’s
equation of muscle contractility, extended to describe
cytoskeletal myosin contractility. However this model
does not capture the band-like propagation of stress
fibers.18 Also it shows stress fibers spreading along
diagonals in cells constrained at the corners of a square
and triangle geometry.18 Experimental observations
indicate otherwise: they show the stress fibers forming
along the edges in cells under comparable con-
straints.39,51,74

The central focus of this paper is to explore, from a
continuum mechanics viewpoint, the nature of cyto-
skeletal actin–myosin interaction and myosin con-
tractility that could lead to band-like stress fiber
propagations in cells. We show that the description of
myosin contractility in Deshpande et al.18,19 omits a
component of the myosin contractile force that is lat-
eral or perpendicular to the direction of cytoskeletal
resistance. In the Methods and Results section we
show that a simple mathematical implementation of
the lateral contractile force produces band-like stress
fiber propagation in a continuum. But first, in the rest
of the Introduction section, we lay out our argument
for the existence of the lateral contractile forces in the
following way. We describe some of the current
continuum models of cell contractility and detail the
features of stress fibers not captured by these models.
We then examine the problem of band-like stress
propagation from a continuum mechanics viewpoint.
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A common argument made against band-like stress
propagation within a continuum is that the strain-
compatibility requirement makes the continuum stress
equations elliptic, and the solutions of elliptic equa-
tions tend to spread. We use a different reasoning. We
attribute the spreading to the more basic requirement
of balancing lone moments that arise with channeled
stress propagation. Therefore an appropriate descrip-
tion of myosin contractile stress that balances these
moments may still produce band-like propagation.
Qualitative experimental observations of actin–myosin
interaction in disordered cytoskeleton indicate that it
can be described by as zippering, whereby contractile
force from an oriented myosin filament is transmitted
to directions away from it by bending actin filaments.
The zippering action implies that a component of the
myosin contractile force is lateral or perpendicular to
the direction of cytoskeletal resistance.

Stress Fiber Patterns from Continuum Models

Myosin contractility has always been an essential
feature of continuum models describing cell migration.
Alt and Dembo1 and Dembo and Harlow16 described
cytoskeletal contractility as an isotropic inward pres-
sure that opposes the outward hydrostatic pressure
of the cell, and increases as a function of the network
volume fraction. Gracheva and Othmer28 described
cytoskeletal contractility as an isotropic active stress
that is a function of myosin accumulation due to
myosin binding and activation kinetics, and to bio-
chemical signaling. Neither of these models accounts
for the increase in myosin force and its accumulation
into stress fibers as a function of cytoskeletal resis-
tance. On the other hand, significant progress has been
made in the study of the dynamics of a single con-
tractile bundle or stress fiber2,4,11,14 and in modeling
actin–myosin interaction in solution.37,52,55 The cell
contractility model of Deshpande et al.18,19 addresses
the accumulation of myosin contractility and stress
fibers as a function of cytoskeletal resistance. The
underlying idea in the model can be described as fol-
lows: A general cytoskeletal contractility pervades the
cell. The resistance of the actin cytoskeleton to myosin
contractility varies in magnitude and direction at dif-
ferent regions of the cell, due to the constraints placed
by substrate attachments and external forces. The
myosin contractile stress at a point increases as a func-
tion of the cytoskeletal resistance to contractility at that
point.

First, the idea that myosin contractile stress
increases with resistance of the actin network is a
converse of the well-known Hill’s equation of muscle
mechanics.18,23 The Hill’s equation states that the
velocity of muscle contraction decreases as the load on

the muscle increases. In other words, increasing the
load that myosin contractile force has to overcome
leads to smaller contraction velocities.23 The Hill’s
equation captures the microstructural phenomena
where a myosin head which is unable to overcome the
applied load remains stalled on the actin filament until
more myosins bind, so that the concerted power-stroke
can overcome the applied load. The overall contraction
velocity decreases because of the time delay in accu-
mulating sufficient myosin binding. Hill’s equation
captures two critical features of actin–myosin interac-
tion: an increased resistance to myosin contractility
leads a decrease in the myosin disassociation constant
and to an increase in the number of myosins binding.
The Hill’s equation was originally formulated for the
well-ordered, unidirectional arrangement of actin and
myosin in muscle sarcomeres. When carried over to the
more disordered cytoskeletal arrangement, the Hill’s
equation still explains why increased resistance to
contractility causes increased myosin binding and
stress fiber formation along the direction of resis-
tance.12

While the model by Deshpande et al.18 predicts the
increased accumulation of myosin at the periphery of
stress fibers, it fails to capture the following features of
stress fibers:

(1) the band-like nature of contractile stress in
stress fibers;

(2) the accumulation of actin material into a
stress fiber;

(3) the formation of stress fiber along edges in
cells attached at the corners of square and
triangular geometries.

The model shows the myosin contractile force
spreading outward from the matrix attachments like
diffusion fronts.18 The spreading of contractile stresses
implies that they dissipate away from the matrix
attachments and have no directed propagation. In
addition, no packing of actin filaments into the stress
fibers can be inferred from the model results. Finally,
the model predicts stress fibers to form along the
diagonals in cells contracting under constraints located
at the corners of square and triangular geometries. On
the other hand, actin-stained images of cells contracting
under micro-patterned constraints or micro-needles
placed at the corners of square and triangular geome-
tries show distinct actin bundles or stress fibers forming
at the edges of the geometry instead of diagonal.39,51,74

Stress Spreading and the Strain Compatibility Equation

The results of the above model can be attributed to
its continuum underpinnings. The spreading of con-
tractile stresses along diagonals is also shown by simple

Stress Fiber Propagation in a Continuum and Implications for Myosin Contractile Stresses



contractile continuum materials and is commonly
attributed to the strain-compatibility condition used
for closing the continuum stress balance.

In a two-dimensional continuum stress field, there
are four unknown stress components, rij, but only
three equations to solve them: the two force balance
equations (Eq. 1) and the moment balance equation
(Eq. 2).

d

dxj
rij ¼ fi ð1Þ

rij ¼ rji ð2Þ

where f is the external force, and the indices i and j
indicate x- and y-directions. Consider a passive mate-
rial for now. Its constitutive equations, relating its
deformation stress and strain, add three new equa-
tions, but also three new unknowns, the strain com-
ponents, eij. For simplicity sake, consider the material
to be isotropic, linear-elastic material, in small-strain
deformation, and with zero Poisson ratio and elastic
modulus, E. Its constitutive equations are

rxx ¼
1

E
exx; ryy ¼

1

E
eyy; rxy ¼

2

E
exy ð3Þ

To close the problem formulation, a constraint is
imposed on the strain field to ensure that the material
is a continuum (without internal fractures and dis-
continuities). This is done in two ways. One way is to
express the three strain components as a function of
the matrix displacements, and solve for the displace-
ments instead. This adds two new unknowns (x- and
y-displacements, u and v) but three new strain-
displacement equations,

eyy¼
@v

@y
; exx¼

@u

@x
; exy¼ :5�

@u

@y
þ@v
@x

� �
; exy¼eyx ð4Þ

The alternative way is to pose a strain compatibility
condition that defines the relation between strain
components in a continuum,

@2exx
@x2

þ @
2eyy
@y2

� 2
@2exy
@y@x

¼ 0 ð5Þ

The compatibility condition is derived by requiring
the displacement field to be conservative.56 Also, the
compatibility condition is but a restatement of the
strain-displacement equations (Eq. 4); the strain-dis-
placement equations can be doubly differentiated and
added to give back the compatibility condition.56 In
all, Eq. (5) dictates the nature of the strain field in a
continuous body.

Combining the stress-balance equations Eqs. (1)–(3)
and the compatibility condition Eq. (5) yields the

following equation as governing the stress field in a
continuum material.

@2rxx

@x2
þ @

2rxx

@y2
þ @

2ryy

@x2
þ @

2ryy

@y2
¼ f ð6Þ

An equation of the form inEq. (6) is ‘elliptic’ because the
coefficients of all terms in the left hand side have the
same sign.17 As discussed in Blumenfeld,5 the solutions
to elliptic differential equations are known to spread. A
typical example of a physical phenomena governed by
elliptic equations is steady-state heat diffusion.

To summarize, the compatibility condition makes
the continuum stress field elliptic and therefore predis-
posed to spread. The argument does not change when
an active contractile material is considered, with its
contractility a function of the cytoskeletal resistance
(see Discussion). However in an active material, the
stress that is balanced (Eqs. 1, 2, and 6) is the total stress
which is the sum of the active contractile stress and
material deformation stress. Since the active contractile
stress and the material deformation stress act in oppo-
site directions, we refer to the total stress as the residual
stress, rij

R,which for the cytoskeletalmaterial is given as,

rR
ij ¼ rM

ij � rN
ij ð7Þ

with rij
M being the myosin contractile stress, and rij

N

being the stress due to the deformation of the cytoskel-
etal network. The residual stress, rij

R, is but a measure of
the cytoskeletal resistance to myosin contraction.

The compatibility requirement on continuum strain
is a common argument made against continuum-based
models, in favor of discrete35 and isostatic models5 of
cell contractility. Blumenfeld5 noted that if the final
stress equation (Eq. 6) were to be hyperbolic, i.e., one
of the coefficients carried a different sign,17 a band-like
stress propagation can occur in a continuum. Hyper-
bolic equations typically govern unsteady convection
and wave transmission. To that end, it was proposed
that the cytoskeletal network may indeed be isostatic
at the discrete network scale.5 An isostatic network has
its stress-state completely determined by the relative
arrangement of its components alone, dispensing
with the compatibility conditions. Coarse-graining an
isostatic network yielded a hyperbolic differential
equation at the continuum level, allowing for stress
fiber-like propagation of contractile stresses. However,
it is not clear if the cytoskeleton is indeed isostatic,
with force balance determined only by the relative
arrangement of its components and not by their
constitutive properties. Also, an isostatic model does
not account for the fact that focused propagation
of contractile stress is not an inherent characteristic
of the cytoskeletal arrangement, but arises by active
rearrangement of the network under myosin forces.
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Stress Spreading and Moment Conservation

While it may be concluded that the strain compat-
ibility requirement preempts the formation of band-
like stress fibers in a continuum, we take on a different
viewpoint. We propose that it is the force- and
moment-balance requirements (Eqs. 1 and 2) that
predispose stresses to spread in a continuum. We
depict our argument pictorially in Fig. 1 with respect
to the moment-balance requirement (Eq. 2). Consider
the compressive stress field with a rigid block due to a
uniform weight placed on it (Fig. 1a). Note that a
passive compressive stress resisting a ‘pushing’ load is

equivalent to active contractile stress resisting a ‘pull-
ing’ load. For a rigid block, the strain gradients are
zero, and the compatibility condition is trivially satis-
fied, and the stress field is no longer limited by the
strain-compatibility arguments. Now consider the
possibility that the compressive stress due to the weight
may channel right through the rigid block without
spreading (Fig. 1b). We can test if such a field is pos-
sible by checking the force and moment balance over
all control volumes (CVs) within the rigid block. In
Fig. 1b, CV 1 and CV 2 are situated completely outside
and completely inside the stress channel, and the net

3 12

(a) (b)

(c) (d)

(e)

FIGURE 1. An argument for stress spreading. (a) Weight placed on rigid block. (b) Example of a possible channeling stress field
within the rigid block due to weight placed on it. For the stress field to exist, the stress conservation equations should hold over all
control volumes within the block. Three sample control volumes are shown. (c) Unbalanced shear forces (gray arrow) on the
control volume 3 alongside the stress channel. The vertical shear force needs to be balanced by a horizontal shear from the
channel (white arrow). (d) Expected stress spreading (gray) to supply the unbalanced force in (c). (e) If the block were deformable,
the unbalanced shear force would cause the control volume to rotate clockwise away from the weight.
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force and moment over them are expected to be zero.
In the case of CV 3, which is situated alongside the
stress channel, there is a lone shear force on the right
vertical surface, which would rotate the CV clockwise
outwards if not balanced (Fig. 1c). As per the
moment-balance equation (Eq. 2), a horizontal shear
force is required to provide the anti-clockwise
moment to neutralize the moment of the lone vertical
shear force (Fig. 1c). Since this horizontal shear force
has to come from within the stress channel, the
channel must spread to generate it (Fig. 1d). Also
note that if the block were not rigid, the unbalanced
vertical shear force would rotate the CV clockwise
outwards and away from the channel as part of
block’s deformation, causing the compressive strain
to spread (Fig. 1e).

Therefore, in a passive continuum material, the
requirement for moment balance can be considered a
more fundamental reason why stresses spread. This
opens the possibility that any active contractile force,
capable of providing the perpendicular force to bal-
ance the moments of a stress channel, can propagate a
band-like stress fiber. To test this we revisit some of the
qualitative experimental observations on cytoskeleton
actin–myosin interaction.

Kinematics of Cytoskeleton Actin–Myosin Interaction

While the kinematics of actin–myosin interaction in
muscle sarcomeres is well studied,15,34 little is known
about how the kinematics translates to the disordered
actin arrangement of non-muscle cytoskeleton. How-
ever a qualitative picture emerges upon examining
some experimental observations. Consider the experi-
ment by Suzuki et al.71 in which myosin filaments were
immobilized on a coverslip in the figure of 8. The
myosin heads were able to pick randomly placed actin
filaments from different directions and transport the
actin filaments parallel to themselves.71 In other words,
an immobilized myosin filament was able to bind actin
filaments from different directions, and zipper the
filaments in to be parallel to itself. A zippering-in action
of myosin on actin filaments was also imaged by
Schaub et al.69 in the retraction fibers of cytochalasin-
treated keratocytes. A zippering-in action suggests two
requirements for actin–myosin binding: (1) that the
initial binding is flexible with relaxed constraints on
actin–myosin orientation, and (2) that end binding is
strict with a preferred parallel actin–myosin orienta-
tion. Experimental observations suggest that such is the
case. Crystallographic and molecular-dynamics studies
show that the myosin head is flexible in the unbound
state, undergoes random Brownian motion and has a
weak initial binding with actin filaments.15,26,80 A
preferred parallel end-binding is suggested by the

parallel arrangement of actin filaments radiating from
actin–myosin clusters in cytochalasin-treated fibro-
blasts77 and by crystallographic/modeling studies
which suggest that the tight binding of myosin with
actin occurs in only one direction.63 Further, SEM
images of actin–myosin interaction in keratocyte cyto-
skeleton show the actin filaments bending to be parallel
to each other at the local interaction site, inspite of the
overall random orientation of the cytoskeletal actin
filaments.73

Consider the qualitative kinematics involved in the
zippering-in action between a strongly bound myosin
filament and a randomly oriented actin filament placed
on it. Zippering would involve bending the local por-
tion of the actin filament to be parallel to myosin and
sliding it along under the myosin power-stroke
(Fig. 2). The force of the myosin power-stroke is
transmitted along the actin filament to the rest of the
network, and due to the filament bending and orien-
tation, the force is felt in directions not necessarily
parallel to the myosin (Fig. 2). In other words, the
contractile force of myosin which, according to Hill’s
equation, is proportional to the network resistance in
that direction, is felt along other directions too, as long
as there are actin filaments oriented in those directions
and the actin filaments have the flexibility to bend.11

Therefore, when translating Hill’s muscle equation to
the disordered cytoskeletal network, the maximal
myosin force cannot be considered to be restricted to
the direction of maximal resistance.

In a coarse-grained sense, the force due to the zip-
pering action of cytoskeletal actin–myosin can be
decomposed into two components: a strong contractile
component along the direction of maximum resistance,
and a significant contractile component perpendicular
to the direction of resistance. We refer to the latter
contractile force as lateral forces. Note that by virtue
of the zippering action, lateral forces exist only as long
as there are actin filaments in the region of the stress
fiber that are oriented away from the stress fiber. This
is different from the Hill’s equation conception,18

where lateral forces also exist as long as there are actin
filaments oriented away from the stress fiber, but being
proportional to the resistance in those directions, the
lateral forces diminish rapidly.

While there is no direct way to infer the presence of
lateral forces around a stress fiber, indirect evidence
can be obtained from some experiments. Schaub
et al.69 observed a strong perpendicular motion and
packing of actin filaments into the main stress fiber of
migrating keratocytes. This suggests the presence of a
lateral compressive force around the stress fiber. We
also note that Svitkina et al.73 and Verkhovsky et al.78

implied the myosin force to have a parallel and per-
pendicular component in their Network Contraction
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Model which describes cytoskeletal rearrangements in
migrating keratocytes. Finally, a strong actin cleavage
is usually observed around the stress fiber in migrating
keratocytes.73 The increased flexibility of the actin fil-
aments around stress fibers suggests that, during the
formation of stress fibers, there is decreased cytoskel-
etal resistance to lateral contractile forces.

To summarize, we argued that the description that
myosin contractility is proportional to cytoskeletal
resistance does not capture the band-like nature of
stress fibers because it omits a component of myosin
force that is transmitted lateral to the resistance
direction by zippering actin–myosin interaction. To
show that accounting for lateral contractile forces will
capture band-like stress fiber propagation, we imple-
ment a simple, minimalistic coarse-grained model of
the zippering actin–myosin interaction in a continuum
cell.

METHODS

Coarse-Grained, Minimalistic Model of Myosin
Zippering in Cytoskeletal Network

We first emphasize that our aim is not to propose a
generalmodel of stress-fiber formation, but only to show
that the band-like propagation of stress fibers can be
modeled within a continuum material if an appropriate
description of actin–myosin interaction is used. We do
not consider other cytoskeletal activity involved in the
formation of stress fibers, like actin polymerization,
actin crosslinking, biochemical signaling, etc., which
though necessary for stress fiber formation, do not affect
our qualitative argument. Also, since our aim is not
to present a detailed microstructural model of
actin–myosin zippering, we only make a coarse-grained
approximation of its net effect which could be easily
implemented in a continuum stress-balance.

3. Myosin filament 
preferentially attached in one 
direction 

1. Randomly oriented 
actin filament  

2. Actin filament Connected to 
cytoskeletal network 

4. Flexible myosin head 
undergoes random Brownian 
motion and binds to nearby 
oriented actin filament. 

4. Myosin power-stroke rotates the local 
portion of the actin filament parallel to itself 
while sliding it along. 

5. Actin filament bending to 
accommodate myosin sliding force and 
network resistance. Myosin force 
transmitted along actin filament to 
network. 

6. Network experiences a net parallel and 
perpendicular contractile force due to 
myosin action 

(a)

(b)

(c)

FIGURE 2. Proposed sequence of events in the zippering interaction between myosin and disordered actin. The zippering action
transmits myosin force through bending actin filaments to directions away from the myosin filament.
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By the Hill’s description of actin–myosin interac-
tion, the maximum myosin force at any point occurs
only in the direction of the maximum network resis-
tance there. However, by the zippering action of actin–
myosin interaction, the maximum myosin force is
transmitted to actin filaments in other directions too.
The simplest way to approximate the zippering action
is then by requiring that the maximum myosin force at
a point acts on all actin filaments at that point, irre-
spective of orientation. Therefore, if rij

M is the myosin
stress, the increase in myosin stress in a time interval Dt
is given as,

DrM
ij ¼ KrR

p C0

X
Xf

ije
N
ij X

f
ij

� �
ð8Þ

K is the proportionality constant. rp
R is the principal

maximum value of the residual stress rij
R, and the

summation is over all filament orientations.
The description of myosin stress in Eq. 8 is

explained as follows. First, Eq. 8 denotes that the
myosin force is proportional to rp

R, and therefore
proportional to the maximum cytoskeletal resistance,
rp
R. Note that the residual stress, rij

R, indicates how
much of the myosin stress is resisted by the cytoskeletal
network without deforming itself, and is a measure of
the cytoskeletal resistance (Eq. 7). Second, our simplest
conception of the zippering action is that the same
maximum myosin force is transmitted along all actin
filaments of the network, irrespective of the filament
direction. This can be captured by multiplying the
maximum myosin force with the tensor of filament
concentrations. The term within the bracket in Eq. 8
gives the filament concentration tensor. It is deter-
mined as follows. eN is the average deformation tensor
of a network and can be shown be equal to the coarse-
grained continuum strain.10 Xij

f is the filament orien-
tation tensor, and its components are,

Xf
xx ¼ cos2 hf; Xf

xy ¼ cos hf sin hf; Xf
yy ¼ sin2 hf

ð9Þ

where hf if the filament direction. The term within the
summation determines the change in the filament
length along a direction as a function of the overall
network strain in that direction. The first multiplica-
tion of the network strain tensor, eN, by Xij

f serves to
project it along that orientation. The value of the
overall network strain along that direction is taken to
determine the change in the total length of filaments
(filament ‘strain’) in that direction. The multiplication
by the second Xij

f projects the filament ‘strain’ in the
filament direction, back along the major directions of
the stress tensor. Therefore, the overall network strain
in each direction is used to determine the change
in filament length in that direction. This idea of

determining filament length change as a projection of
the overall network strain is known as affine trans-
formation, and is commonly used to describe filament
kinematics in networks30 and fiber composites. The
summation in Eq. 8 is over all filament orientations,
and C0 is the initial concentration of actin filaments in
each orientation (or total filament length per unit area
in each direction). The term within the bracket is
therefore a ‘filament strain’ tensor which gives the
concentration of actin filaments in each direction as a
function of the overall strain of the cytoskeletal
network, eij

N. Note that by considering C0 to be
constant, the undeformed actin network is assumed to
be random.

Let k be some measure of the network stiffness
or network resistance to filament rearrangement.
Then the increase in network deformation stress in an
interval Dt due to its deformation and rearrangement
of filaments within is given by,

DrN
ij ¼ k C0

X
Xf

ijDeNij X
f
ij

� �
ð10Þ

where the term within the brackets gives the defor-
mation of the network as a function of the filament
rearrangements or the change in filament concentra-
tion tensor.

Therefore at each time interval, the residual stress
build-up within the cytoskeletal network can be
obtained as,

DrR
ij ¼ DrM

ij � DrN
ij ð11Þ

To summarize, the rearrangement of network filaments
at a point is determined by the overall network strain
at that point. The stiffness of resistance of the network
to the filament rearrangements determines the network
deformation stress. The myosin contractile stress is
determined by the maximum residual stress and acts on
all filaments of the network, irrespective of direction.
That part of the contractile stress that is not balanced
by network deformation is referred to as residual
stress, and shows up as tension within the network.
The residual stress field should be at equilibrium, and
the principle value of the residual stress at a point
determines the myosin stress there for the next round
of contraction.

The equations were implemented via a user-defined
hypoelastic material subroutine in the Marc Mentat
Finite Element software (MSC Software Corporation,
Santa Ana, CA). The plane-stress version of the con-
tinuum stress-balance was solved. Matrix attachments
were modeled, in a manner similar to Deshpande
et al.,18 as attachments to foundation springs that
exerted an external resistive force (f, of Eq. 1 and
Eq. 6) but only normal to the cell surface (see Fig. 3 in
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Deshpande et al.18). In the simulations presented, the
matrix resistance was assumed to be much greater than
the forces of network contraction. The model results
are shown in the following section.

RESULTS

Stress Fiber Patterns in Continuum Model
with Zippering Actin–Myosin Interaction

We first check to see if a zippering action of actin–
myosin interaction will produce stress fiber-like prop-
agation of contractile stresses in a continuum medium.
We simulate what would be a contractile equivalent of
the passive rigid block under compression that was
discussed earlier. A square contractile ‘cell’ is attached
to the matrix along its lower horizontal edge, and is
constrained at a central region in its opposite hori-
zontal edge. The superposed vector and contour map of
the contractile stresses and strains that develop in the

cell model after repeated myosin action is presented in
Fig. 3. The principal maxima of the residual stress field
is shown in Fig. 3a. Two clear channels of contractile
stress propagate from the upper constrained region to
the corners of the lower attached surface. The principal
minima of the continuum strain field is shown Fig. 3b.
It gives the compressive strains in the actin network.
Strong compressive strains occur perpendicular to the
stress channel, indicating the lateral packing of material
into it (Fig. 3b). Therefore two key characteristics of
cell contractility are captured despite the continuum
assumptions: (i) the propagation of contractile stress in
a band-like manner when there is a resistance to con-
tractility, and (ii), the packing of actin material into the
band-like entities called as stress fibers. In Fig. 3c we
show the stress map for the corresponding case of a
simple contractile material, where the lateral forces of
actin–myosin interaction are omitted. A clear spreading
of stresses is seen and no lateral packing of filaments
into any direction is detected.

FIGURE 3. Comparing the deformation of a material with actin–myosin like contractility (above) against that of a simple con-
tractile material (below). Contractile material is attached throughout at the bottom surface and at a central region on the top
surface. Contractility was simulated using the proposed zippering-like interaction between actin and myosin. (a) The principle
maxima of the residual stress due to cell contractility. A clear channeling of stress is seen. (b) The corresponding principle minima
of the network strain. The stress channel region is accompanied by a strong lateral compaction, indicating packing of material into
stress fibers. (c) The contours of stress maxima for simple contracting material, without the lateral contractile force implied by
zippering actin–myosin interaction. A clear spreading of stress is seen.
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We then check the patterns of stress fibers formed
for cells contracting under constraints at the corner
of square and triangular geometries. Previously, we
described that continuum models show contractile
stresses spreading along the diagonal for these
constraints, whereas experiments show stress fibers
forming along the edges. The principal maxima of the
residual stress field is shown in Figs. 4a and 4c. The
residual stresses propagate with definite directionality
along the edges of the geometry, and as shown by the
map of the principal minimum strain (Figs. 4b and 4d),
a strong lateral compaction occurs around them. The
directed propagation of myosin contractile stresses and
the accompanied material packing indicate the for-
mation of stress fibers along the edges of the geometry.
Therefore, a simple accounting of the lateral force due
to the zippering action of myosin was able to repro-
duce experimentally observed stress fiber patterns in a
continuum setting.

DISCUSSION

In this paper we tried to reconcile three aspects
of stress fiber formation: (1) that they form by

cytoskeletal actin–myosin interaction when the myosin
contractility is resisted, (2) that they propagate in a
band-like manner, and (3) that they maintain a level
of stress and strain continuity with the disordered
cytoskeletal matrix they arise from. Based on these
considerations, we explored the description of actin–
myosin contractility that can capture the formation of
band-like stress fibers in a continuum setting. An earlier
study described myosin contractility as increasing as a
function of the cytoskeletal resistance in that direction.
However, that description did not capture the band-like
stress propagation in a continuum and the patterns of
stress fibers seen in cells contracting under simple
constraints. While stress spreading in a continuum is
traditionally attributed to the strain-compatibility
condition which makes the stress equations elliptic and
pre-disposed to spread, we suggested that it occurred
because of unbalanced moments that came with chan-
neled stress propagation. Therefore an appropriate
description of myosin contractile stress can still capture
the band-like propagation in a continuum cell.

A qualitative examination of the cytoskeletal actin–
myosin interaction suggested it to be of a zippering
nature; that myosin undergoes an initial weak binding

FIGURE 4. Simulating the stress fiber patterns in cells contracting under well-defined micro-patterned constraints. The left
panels shows the contours of the principal maxima of the residual stress for a square cell contracting under matrix constraints at
the corner of a square (a) and at the corners of a triangle (c). The right panel shows their corresponding principle strain minima
(b and d). The channeling of stress maxima and accompanying perpendicular compression indicate that the stress fibers form
along the edges of the geometry in both cases.
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with actin filaments of different relative orientation,
but a subsequent power-stroke aligns the actin filament
locally into a strong binding. The bending actin fila-
ment transmits the myosin force in directions away
from the myosin filament. Therefore, the contractile
myosin force tends to follow the orientation of the
actin filaments than of the myosin filament itself. We
refer to the out-of-axis contractile forces as lateral
forces. We implemented a simple coarse-grained ver-
sion of the zippering idea in a continuum model. The
model captured the three feature of stress fibers not
captured previously: (1) the band-like propagation, (2)
the propagation along edges for simple square and
triangular constraints, and (3) the compaction of actin
filaments into it.

Therefore, by combining continuum analysis and
by qualitatively examining cytoskeletal actin-myosin
interaction, we proposed in this paper that when stress
fiber forms by myosin contraction along the direction
of cytoskeletal resistance, a part of myosin contractility
occurs perpendicular or lateral to the stress fiber. This
perpendicular contractile component serves to bring in
actin filaments into the stress fiber and align them, so
that the stress fiber can propagate in a band-like
manner.

Though we used a simplified minimalistic represen-
tation of the cytoskeletal network (homogenous, and
isotropic), the kind of stress fiber propagation in our
simulation results arises from the description of the
myosin forces (as having a force component lateral to
the direction of cytoskeletal resistance) and is not
dependent on the representation of the cytoskeletal
network that was used. Therefore, the ideas presented
in this paper can be extended to, and is applicable to,
the more complex and realistic descriptions of the
cytoskeletal network.

Lateral Forces and Band-like Stress Fiber Propagation
in Continuum Models

We earlier made two continuum mechanics argu-
ments for why stresses spread in a continuum. Within
the framework of these arguments, it can be shown
why the lateral contractile forces prevent stress
spreading.

Consider the case of the compressive stress within a
rigid block due to a weight placed on it (Fig. 1). The
compressive stress was inferred to spread outwards
from under the weight, in order to provide the hori-
zontal force needed to balance the moment from the
vertical shear force along the stress channel (Fig. 1).
Now, an internal compressive stress due to a weight
pushing on the block is similar to an internal
contractile stress due to the weight pulling on the
block. But if the internal contractile stress is due to

actin–myosin zippering action, the vertical contractile
forces resisting the weight would be accompanied by
strong lateral contractile forces (Fig. 5a). These lateral
forces supply the horizontal shear force to balance the
moments from the lone vertical shear force, thereby
preventing spreading (Fig. 5b). If the block were
deformable, a strong lateral contractile force will
rotate CV 3 in an counter-clockwise manner toward
the stress channel, leading to a strain field that
converges a stress channel (Fig. 5c).

We showed earlier that combining the stress balance
equations, the constitutive equations and the strain
compatibility condition for a simple passive material,
yields final stress equations that are elliptic in nature. It
can be shown that accounting for the lateral contractile
forces will make the final stress equation hyperbolic.
Here, we show a simplified derivation that parallels the
earlier derivation of the continuum stress equation,
Eq. (6). For ease of representation, consider the actin
network to be linear elastic and isotropic with zero
Poisson’s ratio. Note that this is similar to the network
description in Eq. (10), were the initial network
random and the actin concentration scaled into the
network elasticity E. The constitutive equations of the
material are,

rN
yy ¼

1

E
eNyy; rN

xx ¼
1

E
eNxx; rN

xy ¼
2

E
eNxy ð12Þ

where rN is the cytoskeletal network stress due to its
deformation and eN is the network strain. The network
deformation stress is related to the residual stress rR

as,

3

(a) (b)

(c)

FIGURE 5. Perpendicular contractile force allows for stress
channeling. (a) Example of stress channeling with perpen-
dicular contractile force. Control volume 3 of Fig. 1b is shown.
(b) Unbalanced vertical shear force on control volume can be
neutralized by lateral contractile force. (c) Strong lateral con-
tractile force causes clockwise rotation of the control volume
inwards toward the stress channel, causing the stress chan-
nel to converge.
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1

E
eNyy ¼ rM

yy � rR
yy ð13aÞ

1

E
eNxx ¼ rM

xx � rR
xx ð13bÞ

1

E
eNxy ¼ rR

xy ð13cÞ

Assume that the cytoskeletal network is constrained
along the y direction and is free along the x direction.
By our description of actin–myosin contractile stress,

the vertical component of the myosin stress, rM
yy,

increases with the residual stress in that direction, rR
yy.

Let 1 be the proportionality constant at any instant.
Note that 1 can take on any value below 1. Therefore
Eq. (13a) can be rewritten as,

1

E
eNyy ¼ ð1� 1ÞrR

yy ð14aÞ

Equation (13b) can also be rewritten in a similar form,

1

E
eNxx ¼ ðg� 1ÞrR

xx ð14bÞ

where g is like a proportionality factor at any instant.
However, the cytoskeletal network is free to deform in
the x-direction, and so rR

xx is small. Therefore a large
component of the horizontal myosin stress, rM

xx, is
contributed by the residual stress in the vertical direc-
tion, rR

yy. rM
xx is more likely to reflect rR

yy, and since
rR
yy � rR

xx, g is likely to be much greater than 1 (g � 1).
Combining the resulting matrix stress–strain equa-

tions, Eqs. (14a), (14b), and (13c), with the compati-
bility condition (Eq. 5) gives

ðg� 1Þ @
2rR

xx

@y2
þ ð1� 1Þ

@2rR
yy

@x2
¼ �2

@2rR
xy

@x@y
ð15Þ

Also, the stress balance equations (Eqs. 1 and 2) can be
differentiated and combined to give,

@2rR
xx

@x2
þ
@2rR

yy

@y2
¼ �2

@2rR
xy

@x@y
ð16Þ

Combining Eqs. (15) and (16), the stress equation
appears as,

@2rR
xx

@x2
þ
@2rR

yy

@y2
þ ð1� gÞ @

2rR
xx

@y2
þ ð1� 1Þ

@2rR
yy

@x2
¼ 0

ð17Þ

Since g � 1, the third term is negative, making the
stress equation hyperbolic and therefore able to handle
the propagation of band-like contractile stresses or
stress fibers. Note that the strain compatibility condi-
tion is still satisfied.

If actin–myosin contractility were governed by the
Hill’s equation,18,19 the myosin stress in the x-direc-
tion would remain becomes proportional to the
residual stress in the x-direction. In Eq. (17), this
would mean that g < ~1 and (1 � g) is positive,
making the resulting stress equation elliptic. There-
fore contractile stresses spread with a Hill’s equation-
like description of myosin contractility. It can also be
shown by a similar argument that stresses spread if
the contractile stress were assumed a monotonic
function of matrix strain instead. Finally, if the
material were passive, g and 1 go to zero, and
Eq. (17) reduces to the elliptic stress equation for a
continuum material (Eq. 6).

Peripheral Stress Fibers

It can be argued that the actin staining along the
edges of contracting cells39,51,74 is due to the cortical
actin network and not stress fibers. However, the
existence of edge or peripheral stress fibers in fibro-
blasts on rigid surfaces have been documented.40,76

Katoh et al.40 showed that disruption of the peripheral
fibers by inhibitors of Myosin Light Chain Kinase
resulted in loss of cell shape, whereas disruption of the
central stress fibers did not. The researchers also
showed that, following the restoration of ATP,
peripheral stress fibers contracted first, and that their
contraction was near complete before central stress
fibers started to contract. These observations suggest
that peripheral stress fibers are primary stress fibers
which form by actin–myosin contraction and deter-
mine the shape of the cell, whereas the central stress
fibers are secondary stress fibers which form by actin
polymerization in the stress field of the peripheral
stress fibers. The insights gained from our study would
apply only to stress fibers forming by actin–myosin
contraction and not by actin polymerization. A similar
case for the two kinds of stress fibers, one forming by
actin–myosin contractility and the other by filament
polymerization was made by Hotulainen and Lappa-
lainen32 in human osteosarcoma cells. The transverse
arc stress fiber, formed by lateral fusion of actin
myosin bundles,69 was disrupted by inhibiting myosin
contractility with blebbistatin.32 However, the blebb-
istatin disruption of the dorsal stress fibers, which grow
at rates attributable to actin polymerization, was
delayed until after the transverse arc stress fibers were
disrupted. These observations suggest that the dorsal
stress fibers, which form by actin polymerization, are
secondary fibers developing in the cytoskeletal stress
field due to the transverse arc stress fibers, which form
by myosin contraction.

CHANDRAN et al.



CONCLUSION

The aim of this paper was not to formulate a model
of stress fiber formation, but to put forth ideas for
interpreting the contractile stress field within a cell.
The central message is that the presence of a stress fiber
indicates both a strong contractile force along a stress
fiber and a strong compressive force perpendicular or
lateral to it. The lateral forces must be accounted for, if
cytoskeletal force transfer needs to be captured within
a continuum setting. Understanding the contractile
stress field around a stress fiber provides insight into
the link between stress fibers and cell shape, the flow of
actin within a contractile cell, and the formation and
arrangement of secondary stress-fibers in the residual-
stress field of established stress fibers. The study also
shows that the zippering nature of actin–myosin
interaction allows for band-like propagation of stress
fibers within a coarse-grained cell continuum.
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