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Abstract

The cytoskeleton is a complex structure within the cellular corpus that is responsible for the main structural properties and motilities of

cells. A wide range of models have been utilized to understand cytoskeletal rheology and mechanics (see e.g. [Mofrad, M., Kamm, R.,

2006. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, Cambridge]). From this large collection of

proposed models, the soft glassy rheological model (originally developed for inert soft glassy materials) has gained a certain traction in

the literature due to the close resemblance of its predictions to certain mechanical data measured on cell cultures [Fabry, B., Maksym, G.,

Butler, J., Glogauer, M., Navajas, D., Fredberg, J., 2001. Scaling the microrheology of living cells. Physical Review Letters 87, 14102].

We first review classical linear rheological theory in a concise fashion followed by an examination of the soft glassy rheological theory.

With this background we discuss the observed behavior of the cytoskeleton and the inherent limitations of classical rheological models

for the cytoskeleton. This then leads into a discussion of the advantages and disadvantages presented to us by the soft glassy rheological

model. We close with some comments of caution and recommendations on future avenues of exploration.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The cytoskeleton is an integrated system of biomolecules,
providing cellular systems with shape, integrity and internal
spatial organization. It is a three-dimensional network
consisting of a complex mixture of actin filaments, inter-
mediate filaments and microtubules that are collectively
responsible for the main structural properties and motilities
of the cell. A wide range of theoretical models have been
proposed for cytoskeletal mechanics, ranging from con-
tinuum models for cell deformation to actin filament-based
models for cell motility (Lim et al., 2006; Mofrad and
Kamm, 2006). Numerous experimental techniques have also
been developed to quantify cytoskeletal mechanics, typically
involving a mechanical perturbation to the cell in the form
of either an imposed deformation or force followed by
e front matter r 2008 Elsevier Ltd. All rights reserved.
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observation of the static and dynamic response of the cell
(Fabry et al., 2001; Lim et al., 2006; Mofrad and Kamm,
2006). These experimental measurements along with new
theoretical approaches have given rise to several theories for
describing the mechanics of living cells. These theories
model the cytoskeleton as elastic, viscoelastic, or poro-
viscoelastic continua, tensegrity (tension integrity) networks
incorporating discrete structural elements that bear com-
pression, porous gels, or most recently as soft glassy
materials (SGMs) using the soft glassy rheology (SGR)
model (Lim et al., 2006; Mofrad and Kamm, 2006).
Cytoskeletal mechanics plays a key role in many cellular

processes and functions, e.g. in cellular mechanotransduc-
tion and motility that involves contraction, spreading and
crawling. Mechanics also plays an important role in cell
division and programmed cell death. In this context,
rheological properties of the cytoskeleton are of utmost
importance. Several recent studies have reported on the
rheological properties of the cytoskeleton, in particular
examining the frequency dependency of the storage
modulus, G0ðoÞ, and the loss modulus, G00ðoÞ. Of particular
interest are recent experiments that probe the response of
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the cytoskeleton in the frequency range of 10�22103 Hz
(Fabry et al., 2001; Bursac et al., 2005; Deng et al., 2006).
Inspired by the similarity between experimental data on
cells and those reported on SGMs, Fabry et al. (2001)
hypothesized that the cytoskeleton is a SGM and can be
modeled using the SGR model of Sollich (1998).

SGMs form a class of materials that generically include
(liquid) foams, emulsions, slurries and pastes. The
dynamics and rheological properties of this class of
materials have been reasonably well studied (Mackley et
al., 1994; Khan et al., 1988a, b; Mason et al., 1995; Panizza
et al., 1996; Hoffman and Rauscher, 1993; Mason et al.,
1995) in terms of their linear viscoelastic properties such as
storage modulus and loss modulus as a function of
frequency. There does not exist a precise definition of a
SGM, but it is generally agreed that SGMs possess, at the
minimum, the following four properties:
1.
 They are soft in the sense that they possess mechanical
moduli in the Pa to kPa range.
2.
 Their loss tangent tanðd̄Þ ¼ G00ðoÞ=G0ðoÞ is nearly
constant for a wide range of frequencies.
3.
 The frequency dependencies of these moduli are weak
power laws of the frequency of the applied load.
4.
 Under certain conditions they display aging behavior.

The abstract system properties that are claimed to
characterize the dynamics of SGMs are the degree of
structural disorder and metastability (Sollich et al., 1997).
Many experiments have been performed to show evidence
of these generic properties, see e.g. Cloitre et al. (2000),
Weeks and Weitz (2002) and Ramos and Cipelletti (2001).

One key characteristic of glassy materials is that they are
not in thermodynamic equilibrium below their glass
transition temperature. Such materials are regarded as
solidified supercooled liquids in a metastable non-equili-
brium state. Volume-relaxation studies of glassy materials
show they undergo slow processes indicating that even
below the glass transition temperature, Tg, molecular
mobility is not fully suppressed. This gradual evolution
affects many properties of the material (Struik, 1966).
These properties change with time and the material is said
to undergo aging or more precisely physical aging. Aging is
often measured relative to the time at which the material
sample was formed or prepared. Some of the experiments
on SGMs in the literature indicate behavior of this type
(Cloitre et al., 2000; Ramos and Cipelletti, 2001). Based on
such observations of dynamic moduli and aging, Sollich
et al. (1997) and Sollich (1998) have developed a theory to
model SGMs through a modification of Bouchaud’s model
of traps and glass phenomenology (Bouchaud, 1992;
Monthus and Bouchaud, 1996).

The objective of this paper is to:
1.
 Provide a concise review of classical linear viscoelasticity.

2.
 Explore Sollich’s SGR model, using the concepts of

linear viscoelasticity.
3.
 Revisit rheological data collected on cultured cells and
critically examine its relation to linear viscoelasticity and
the SGR model.

In Section 2, we review basic linear rheological representa-
tion results which are useful for discussing and under-
standing the behavior of the cytoskeleton. In Section 3, we
review the results of some selected experiments on
cytoskeleton. Section 4 examines Bouchaud’s model
followed by the SGR model proposed by Sollich for
modeling SGMs. The comparison of experimental results
to the SGR model is made and analyzed in Section 5.

2. Rheological measures: a synopsis

A basic knowledge of rheology is essential for an
understanding of the meaning of mechanical experiments
performed on cell cultures. In this section we provide a
summary of a number of important rheological representa-
tion results with added remarks on important modeling
assumptions. The aim is to provide a context for a
reasoned discussion of the SGR model and a common
linguistic platform for discussing and interpreting
recent measurements on cell cultures. In the interest of
brevity we omit the derivations of the presented formulae
and simply refer the interested reader to the classic
references of Ferry (1961) and Tschoegel (1989). Not all
which we present can be found in these references, but from
them, and some modest complex-variable theory, one can
derive all the presented results; see also Fuoss and
Kirkwood (1941).

2.1. Generic response functional representations

In the interest of illuminating rheological issues, we
make our presentation strictly within the geometrically
linear theory. In this context, the appropriate strain
measure is

e ¼ 1
2
ðruþ ruTÞ, (1)

the symmetric gradient of the displacement field.
Within this realm, the simplest material response is stress
r ¼ r̂ðeÞ, such that

R t2
t1

r: _edt ¼ 0, when eðt1Þ ¼ eðt2Þ. The
salient feature of this model is that the stress is an
instantaneous function of the present value of the strain
and is unaffected by the past history. In short, the material
is elastic.
In a viscoelastic setting, the stress is dependent on the

current and also on the past history of the strain; i.e.,

rðtÞ ¼ S
t02ð�1;t�

ðeðt0ÞÞ. (2)

The stress is said to be a functional of the strain history.
Within reasonable continuity assumptions, one can
expand the functional as a functional polynomial (Green
and Rivlin, 1957). Retaining the leading two terms
and assuming the material possesses time translational
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invariance (TTI) gives us the classic expression

rðtÞ ¼

Z t

�1

Cðt� t0Þ:
de

dt0
dt0. (3)

Here, CðtÞ is the fourth order tensorial relaxation kernel.
We can additionally split the response into volumetric and
deviatoric parts using the standard definitions: r ¼ p1þ s,
where the deviatoric stress s ¼ r� 1

3
trðrÞ1, the pressure

p ¼ 1
3
trðrÞ and 1 is the identity tensor. If we make the

further assumption of isotropy and elastic bulk response,
then, constitutively, we have

p ¼ ktrðeÞ,

sðtÞ ¼

Z t

�1

Gðt� t0Þ
de

dt0
dt0, (4)

where k is the bulk modulus and e ¼ e� 1
3
trðeÞ1 is

the deviatoric strain. Thus, in the linear isotropic setting
with elastic bulk response, complete specification of
the mechanical rheological properties reduces to the
determination of Gð�Þ, the so-called (shear) relaxation
modulus.

Remarks.

1. It should be emphasized that the representation in
Eq. (3) presumes the notion of TTI. This is a very central
assumption in most rheological models. Thus care must be
taken when trying to interpret results that may pertain to
out-of-equilibrium systems where TTI is no longer
generally valid. When TTI does not hold, we have the
added complication that the relaxation modulus depends
not only on relative time t� t0 but also explicitly upon
absolute time t0— i.e., Gðt� t0; t0Þ.

2. Eqs. (3) and (4) represent models that have a rather
broad range of applicability. They are fully independent of
any physical model of relaxation and evolution of
microstructure. In particular, they are appropriate for
stress determination for essentially arbitrary strain his-
tories. This is a point that should be kept in mind when
thinking about using rheological models within larger
modeling frameworks such as physiological response
simulation systems of whole organs or larger systems
(Physiome Project, 2007). For these purposes, GðtÞ is
generally required and must be defined over the complete
range t 2 ½0;1Þ.

3. The value Gð0Þ is the instantaneous elastic modulus
and can be relatively quite high. In fact Gð0Þ ¼ 1 can be
mathematically sound but is of course physically unrealis-
tic. For models permitting Gð0Þ ¼ 1, care must be taken in
limiting the strength of the singularity so that the required
integrals are well defined.

4. GðtÞ needs to possess the so-called fading memory
property (Coleman and Mizel, 1968). To first order, this
requires that GðtÞ ! G1, a constant, as t!1. If G1 ¼ 0,
then the material is considered a viscoelastic fluid,
otherwise a viscoelastic solid.
5. The use of viscoelastic internal variables with
differential evolution laws is an alternative to the modeling
framework of Eqs. (3) and (4). However, it should be noted
that such models are, in principle, a subset of the
convolution type models when applied to the geometrically
linear case.

2.2. Experimental methods

In theory, the easiest way to determine GðtÞ is to perform
a shear test by imposing a deviatoric step strain
eðtÞ ¼ e0HðtÞ, where trðe0Þ ¼ 0 and HðtÞ is the Heaviside
step function. In this case, the measured stress response,
sðtÞ ¼ GðtÞe0, directly provides the relaxation function. In
practice the imposition of a step strain involves a time
constant for inducing the motion and a sampling rate. The
net result is that GðtÞ will only be known in some time
interval ½tmin; tmax�. However, for a complete theory, one
must extend the domain to ½0;1Þ. For a variety of reasons,
not the least of which is experimental fidelity, one often
employs steady state excitation to determine GðtÞ. In this
case, one ends up measuring a close relative of the Laplace
transform of GðtÞ. Let eðtÞ ¼ e0 exp½iot�, where i ¼

ffiffiffiffiffiffiffi
�1
p

and o is the frequency of the imposed deformation. Then
from Eq. (4), sðtÞ ¼ G�ðoÞeðtÞ, where G�ðoÞ is known as the
dynamic or complex modulus. G0ðoÞ ¼ ReðG�ðoÞÞ provides
the in-phase stiffness or storage modulus and G00ðoÞ ¼
ImðG�ðoÞÞ is the out-of-phase stiffness or loss modulus.
Their ratio G00=G0 is referred to as the loss tangent,
tanðd̄ðoÞÞ, and is the easiest of all the linear rheological
functions to measure as d̄ðoÞ is just the phase lag of the
stress response to the strain excitation. In such experiments
jG�j is the ratio of the peak stress to peak strain. Thus one
also has G0 ¼ jG�j cosðd̄Þ and G00 ¼ jG�j sinðd̄Þ.

2.3. Representations

If one desires to change from a steady state representa-
tion to a temporal representation or vice versa, then one
can employ the well-known interconversion relations that
allow one to determine any of the steady state representa-
tions from the temporal relaxation function via an
integration. Likewise one can also determine the temporal
relaxation function via an integration of any of the steady
state representations. Both integration procedures, how-
ever, are predicated upon an analytic representation of the
required integrands over an infinite interval in time or
frequency. Having such an analytic representation is often
a non-trivial barrier to using such formulae because the
integrands are usually determined experimentally over
finite intervals. A selection of the most important
interconversion relations is presented in part A of the
Supplement.
Beyond these two common representations, rheological

behavior is often also discussed in terms of spectra. Spectra
have the nice advantage that they reveal more clearly the
strengths of various relaxation mechanisms in a system.
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Completely independent of any assumed physical model,
from a purely mathematical perspective, we can express
GðtÞ as

GðtÞ ¼

Z 1
0

F ðtÞ e�t=t dt, (5)

where F ðtÞ is known as the relaxation-time spectrum for
GðtÞ. The magnitude of F ð�Þ at a particular value of t
indicates the importance/strength of relaxation phenomena
at that particular time scale. In other words, F ð�Þ is a direct
representation of the distribution of relaxation-time scales
present in a material. The form is quite general and is not
restricted to overall exponential relaxation as one may
naively presume from Eq. (5). Note, however, it is common
for one to refer to F ð�Þ as a distribution of Maxwell modes.
Further, the specification of F ð�Þ allows one to think of
relaxation mechanisms in a continuous sense. This is a
point which makes good physical sense, if one contem-
plates the number of possible relaxation mechanisms in any
finite size sample. Other common alternatives to Eq. (5)
express GðtÞ in terms of log relaxation-time and relaxation-
frequency spectra:

GðtÞ ¼

Z 1
�1

Hðlog tÞ e�t=t dðlog tÞ, (6)

where Hðlog tÞ=t ¼ F ðtÞ and

GðtÞ ¼

Z 1
0

NðaÞ e�ta da, (7)

where Nð1=tÞ=t2 ¼ F ðtÞ.

Remarks.

1. For simple viscoelastic systems, the spectra are often
composed of sums of Dirac distributions but for more
complex systems the spectra are continuous functions. As
we shall see later, we will be able to gain some insight into
the SGR model via a spectral representation.

2. It is possible to interconvert between spectral
representations, steady state representations, and temporal
Fig. 1. (a) and (b) Beads attached to the cytoskeleton. (c) The application of ma

Fabry et al., 2003).
relaxation representations. In the part B of the Supple-
ment, we have collected some of the most useful
interconversion formulae for such interconversions. Note,
however, that the limitation mentioned earlier about
interconversion still applies. One always needs an analytic
representation of the integrand in the interconversion
formula and this is often non-trivial to obtain from
experimental methods.

3. Experiments on cytoskeleton

3.1. Equilibrium rheological measurements

Fabry et al. (2001) have performed experiments on the
mechanical response of the cellular cytoskeleton with an
eye toward soft glassy phenomena and thus we will focus
our discussions mainly upon their data. They have
obtained the mechanical response of a variety of cells
through magnetic twisting cytometry (MTC); see Fig. 1.
The details of the experiments are given in Fabry et al.
(2001). The dynamic properties G0 and G00 of the
cytoskeleton’s structural response were measured in the
experiments; see Fig. 2. It should be remarked that the
measured mechanical properties correspond to the linear
mechanical behavior of the cytoskeleton embedded inside a
cell and are, as such, not the true moduli of the
cytoskeleton in the sense of a homogenized continuum—
though, by linearity, one can reasonably argue that the
properties reported should be linearly proportional to the
true homogenized continuum moduli of the cytoskeleton.
In the experiments mentioned, the magnetic bead is

attached to the cytoskeleton via rigid links between
transmembrane integrins and the extracellular molecules
(e.g. fibronectins) that are coated on the bead (Fig. 1).
A magnetic twisting field introduces a torque causing the
bead to rotate and to displace (Fig. 1). The frequency
dependence of G0 and G00 is then extracted from the
structural response at the point of bead attachment. The
results are as shown in Fig. 2, where G0 increases with
gnetic field and the displacement of the bead (reproduced with permission,
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Fig. 2. (a) and (b) G0 and G00 as a function of frequency o for different

drug treatments. Under controlled conditions (filled squares), treatment

with histamin (unfilled squares), treatment with DBcAMP (filled

triangles), treatment with Cytochalasin D (unfilled triangles). The solid

lines are fit using Eq. (9) with the values of Ĝ ¼ 53:6 kPa, F̂ ¼ 25�

107 rad=s and m ¼ 1:41Pa s. (c) Extrapolation of solid lines cross over at

ðĜ; F̂Þ. (d) Dynamic moduli under control conditions (reproduced with

permission, Fabry et al., 2003).
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increasing frequency, o, according to a power law �ox�1,
with x ¼ 1:20 under control conditions. G00 also increases
with increasing frequency and follows the same power law
in the range of 0.01–10Hz. Above 10Hz, however, the
same power-law behavior is not seen. Similar experiments
were performed by manipulating the cells with various
drugs in order to create contraction or relaxation in the
cytoskeleton and identical qualitative properties were again
observed (Fig. 2). G0 increased with increasing frequency,
o, as a power law �ox�1 but with different values of x for
each treatment. The value of x correlated sensibly to the
biochemical activity of the various drugs employed. G00 also
increased with increasing frequency with the same power
law and same exponent until 10Hz; above 10Hz, the
behavior changed in a manner similar to what was
observed in the control. It was also noted that the loss
tangent in the frequency range 0.01–10Hz was relatively
frequency insensitive and was of the order of 0.1.
Fabry et al. (2003) proposed an empirical relationship

for the data they observed from the experiments. They
proposed that the stress response GðtÞ to a unit step strain
imposed on the cell at t ¼ 0 is

GðtÞ ¼ mdðtÞ þ Ĝ
t

t̂

� �1�x

; tX0. (8)

Here, Ĝ is the ratio of stress to the unit strain measured at
an arbitrarily chosen time t̂, m is a Newtonian viscosity and
dð�Þ is the Dirac delta function. The complex-valued
dynamic modulus for this model is

G�ðoÞ ¼ iomþ Ĝ
o

F̂

� �x�1

Gð2� xÞ

� cos
p
2
ðx� 1Þ

� �
þ i sin

p
2
ðx� 1Þ

� �h i
, (9)

where F̂ ¼ t̂
�1
.

The four parameters m, Ĝ, F̂ and x can be obtained by
statistical analysis of the data and one sees that Eq. (9) is a
remarkably good fit of the experimental data; see Fig 2. It
is striking that drug interactions only seem to affect x when
dealing with a single class of cells. As we shall see in Section
4, the empirically assumed form Eqs. (8) and (9) bear a
close resemblance to the SGR model equations.

Remarks.

1. Eq. (9) is mathematically valid for xo2 but the physical
restriction (of fading memory) that the relaxation function
should not grow with time imposes the limit x41. Thus,
the relation should only be considered valid for 1oxo2
for viscoelasticity.
2. It should also be noted that the relaxation function,

Eq. (8), presumes TTI. Thus, the dynamic modulus, Eq. (9)
should also be considered to assume TTI; i.e., both
relations are only valid near thermodynamic equilibrium.

4. Soft glassy rheology

4.1. Bouchaud’s glass model

Bouchaud (1992) originally studied the concepts of
structural disorder and metastable configurations in spin-
glasses, and later applied his ideas to explain the
phenomenology of glassy systems in general (Monthus
and Bouchaud, 1996). This model of glass phenomenology
is discussed here as it leads directly to Sollich’s rheological
theory of SGMs. The conformational energy landscape of
a finite disordered system is extremely rough, with many
local minima corresponding to metastable configurations,
or states. These local minima are assumed to be
surrounded by high energy barriers. These states can thus
be considered as traps which hold the system for certain
periods of time t. The distribution of these trapping times
is critical in the quantification of such materials.
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Fig. 3. Energy landscape showing different metastable states after

Bouchaud (1992).
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A schematic of the energy landscape is given in Fig. 3.
Here, f 0 is the energy level below which the states are
disconnected. It is the minimum energy required to hop
between any two states. It is assumed here that the
dynamics between the traps is very fast and the probability
to find the system between two metastable states is
negligible. The depth of a trap is E ¼ f 0 � f40. In the
model, the abstract space of traps is characterized by a
given probability density function rðEÞ for the depth
of the traps. Assuming a canonical distribution at
temperature T ¼ b�1, the system can escape from its trap
of depth E with a rate G0 e

�bE per unit time, where G0 is an
attempt rate. The system chooses a new trap of depth E0

with probability rðE0Þ, with no reference to any spatial
structure as may be implied by Fig. 3. Therefore, the
probability PðE; tÞ that one can find the system in a trap
of energy depth E at time t evolves in time from an
initial condition P0ðEÞ according to the master balance
equation as

qPðE; tÞ

qt
¼ �G0 e

�bEPðE; tÞ þ G0GðtÞrðEÞ, (10)

where GðtÞ ¼
R1
0

e�bEPðE; tÞdE and a Boltzmann tem-
perature scale is presumed. On the right-hand side of
Eq. (10), the first term indicates the rate of probability of
hopping out of a trap of energy depth E. The second term
indicates the rate of probability of the system falling into a
trap of energy depth E. Taken together, these two terms
give the rate of change of the probability of finding the
system in a trap of depth E.

A normalizable stationary distribution PeqðEÞ exists at
temperature T ¼ b�1 if and only if

GeqðbÞ ¼
1R1

0 ebErðEÞdE
40. (11)

If we have a normalizable stationary distribution, then
PeqðEÞ is given by

PeqðEÞ ¼ GeqðbÞ ebErðEÞ. (12)

The condition of normalizability is closely related to the
large energy asymptotic behavior of the distribution of
traps, which is characterized by the reciprocal (glass
transition) temperature:

1

Tg
¼ bg ¼ lim

E!1
�
logðrðEÞÞ

E
. (13)

As pointed out by Bouchaud, three interesting cases arise
from this criterion:
1.
 If rðEÞ decays faster than exponentially at large E, then
Tg ¼ 0 and a normalizable stationary distribution
always exists.
2.
 If rðEÞ decays slower than exponentially at large E, then
Tg ¼ 1 and a normalizable stationary distribution does
not exist.
3.
 If rðEÞ decays exponentially as e�bgE at large E, then Tg

is finite and a normalizable stationary distribution exists
at temperatures above Tg.

These are the central elements of Bouchaud’s abstract
model. Before going on to discuss the theory proposed by
Sollich, it is important to state that Sollich assumes the
existence of a finite non-zero glass transition temperature
such that a normalizable stationary distribution exists
above a finite Tg and ceases to exist below it.

4.2. SGR theory

Based on Bouchaud’s glass model, Sollich et al. (1997)
and Sollich (1998) proposed the SGR model. The model
pictures a material which consists of a large number of
elements that are trapped in cages formed by their
neighbors. An individual element sees an energy landscape
of traps of various depths and, when activated, hops into
another trap. Sollich claims that in SGMs, thermal
activation is, a priori, very small compared to the typical
trap depths. Sollich further claims that activation is due to
the interactions between elements; i.e., rearrangements
somewhere in the material can cause rearrangements
elsewhere. This coupling between elements is unspecified
in the model and is solely represented by an effective
abstract noise temperature x (Sollich et al., 1997; Sollich,
1998). In reality, it is more likely that the energy barriers
are changing due to rearrangements—for example as is
known to happen in the yielding of glassy polymers
(Argon, 1973). However, since only the ratio of the energy
barrier to the temperature appears in the SGR theory, one
can argue that one does not have to specify the true state of
affairs.
Sollich’s evolution equation for the probability of

finding an element in a trap of depth E at time t is similar
to Eq. (10), except with b replaced by 1=x. Thus similar to
the three cases considered by Bouchaud, to have a
normalizable probability distribution, one also has here
three cases with xg being zero, infinite and finite. As
mentioned, Sollich assumes that there exists a finite value
for the glass transition, denoted here by xg. For x above xg,
a stationary probability distribution exists and will be
reached after a certain amount of time and below xg the
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stationary probability distribution ceases to exist. Thus
Sollich assumes the density of traps has an exponential tail,
rðEÞ� exp½�E=xg�.

In order to describe material deformation and flow,
Sollich further incorporates strain degrees of freedom into
Bouchaud’s model as a bias on the trapping depths.
He restricts himself to a one-dimensional model and
introduces a local scalar strain variable l per element.
Applying a strain on the material, each element is assumed
to deform elastically from the local equilibrium configura-
tion until it reaches a yield point, identified by ly,
from where the element rearranges into a new configura-
tion relaxing the stress in the element. It is assumed that
the element fully relaxes taking the strain completely
back to zero. As the macroscopic strain g is increased, l

executes a sawtooth-like motion. The yield strain ly is
obtained from the trap depth E, in which the element is
located, and thus the yield points have a distribution and
not a single value.

Assuming each element to be linearly elastic with an
elastic constant k, the stress in the elements evolves as kl,
and the elastic energy that can be stored in an element is
1
2

kl2y. Assuming that the microscopic strain rate is the same
as the macroscopic strain rate, _g, the state of the system at
time t is characterized by the probability of finding an
element in a trap of energy depth E and a local strain l at
time t. The probability evolves as

qPðE; l; tÞ

qt
¼ �_g

qP

ql
� G0 e

�ðE�1
2
kl

2
Þ=xPþ G0GðtÞrðEÞdðlÞ,

(14)

where

GðtÞ ¼
ZZ

e�ðE�
1
2
kl2Þ=xPðE; l; tÞdl dE. (15)

On the right-hand side of Eq. (14), the first term represents
the change in probability because of the motion in the same
energy trap E, while the second and third terms have the
same meaning as described earlier. Note that the third term
now contains a dðlÞ function, due to the assumption that
the local strain becomes zero immediately after the
relaxation. It must be remarked that the energy well
chosen is uncorrelated with its previous one. The average
non-dimensionalized (by G0) yielding rate is given by
Eq. (15).

Finally, the rheological response, which is the macro-
scopic stress, is obtained as the expectation value of the
local stresses:

s ¼
ZZ

klPðE; l; tÞdl dE. (16)

As Sollich importantly points out, the effective noise

temperature x is not a parameter that we can easily tune
from outside; rather, it is to be determined self-consistently
by the interactions in the system.
4.3. SGR linear relaxation function

As detailed in part C of the Supplement one can solve
Eq. (16) to obtain a nonlinear viscoelasticity model—i.e., a
model where the rate of viscous relaxation depends upon
the degree of perturbation from equilibrium as measured
by strain. This model can be further linearized to yield a
small strain linear viscoelastic model. Central to this
procedure is the assumption that the material is near
equilibrium and that one can use the equilibrium prob-
ability distribution as an initial condition. The end result
yields expressions for the above xg, small strain, near
equilibrium relaxation function and complex modulus as

GðtÞ ¼ kG0
x

xg
� 1

� �Z 1
1=G0

e�t=tðG0tÞ
�x=xg dt, (17)

where t ¼ ð1=G0Þ expðE=xÞ and represents the average
trapping time in a particular well in the SGR model. The
dependency of the dynamic modulus on frequency is

G�ðoÞ ¼ G0ðoÞ þ iG00ðoÞ ¼ io

�

Z 1
0

e�iotkG0ðG0tÞdt ¼ kG0
x

xg
� 1

� �

�

Z 1
1
G0

iot
1þ iot

ðG0tÞ
�x=xg dt. (18)

Remarks.

1. In reference to part B of the Supplement, Eqs. (17) and
(18) show that the linearized near equilibrium SGR model
is mathematically equivalent to a system (of Maxwell
elements) with a continuous power-law distribution of
relaxation times, F�t�x=xg , with a lower relaxation-time
cut-off of 1=G0. In relaxation space, we see that this model
has a linear distribution on a log2 log scale; i.e.,
logðHÞ� logðtÞ. Such a behavior is often associated with
self-similar phenomena.



ARTICLE IN PRESS
x g

G
’’(

ω
) /

 k
Γ e

qx

10−6

10−4

10−2

100

102

10−4 10−2 100 102 104

ω / Γ0

x = 1.05xg
x=1.1xg
x=1.5xg
x = 2.5xg

Fig. 5. G00 variation with frequency o for x
xg
¼ 1:05, 1.1, 1.5, 2.5.

10−2 10−1 100 101

ω (Hz)

x/xg = 1.17 Expt
x/xg = 1.20 Expt
x/xg = 1.28 Expt
x/xg  = 1.33 Expt
x/xg = 1.17 SGR
x/xg  = 1.20 SGR
x/xg  = 1.28 SGR
x/xg  = 1.33 SGR

Γ0 = 10 Hz

100

101

102

103

104

G
′(ω

) (
P

a)

100

101

102

103

104

G
′′(

ω
) (

P
a)

10−2 10−1 100 101

ω (Hz)

Γ0 = 10 Hz

x/xg = 1.17 Expt
x/xg = 1.20 Expt
x/xg = 1.28 Expt
x/xg  = 1.33 Expt
x/xg = 1.17 SGR
x/xg  = 1.20 SGR
x/xg  = 1.28 SGR
x/xg  = 1.33 SGR

Fig. 6. Regression fit of the SGR model to the data of Fabry et al. (2003).

Solid lines represent the experimental data and the remaining curves

represent the model fit. In all cases, G0 ¼ 10Hz. The fitted local elasticities

are given as 6.7, 4.4, 1.5, 0.78 kPa for the cases of x=xg of 1.17, 1.20, 1.28,
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2. The behavior of the dynamic modulus is most easily
seen via simple numerical simulation; see Figs. 4 and 5.
One observes for frequencies of order 1 and less relative to
the attempt frequency, G0, that:

G0ðoÞ�

o
G0

� �2

for 3o
x

xg
and 10�4o

o
G0

o1

o
G0

� �ðx=xgÞ�1

for 1o
x

xg
o3 and

10�4o
o
G0

o1;

8>>>>>>>><
>>>>>>>>:

(19)

G00ðoÞ�

o
G0

� �
for 2o

x

xg
and 10�4o

o
G0

o1;

o
G0

� �ðx=xgÞ�1

for 1o
x

xg
o2 and

10�4o
o
G0

o1:

8>>>>>>>><
>>>>>>>>:

(20)

The interesting regime is the range where x=xg lies between
1 and 2. In this range, G0 and G00 have a constant ratio and
both vary as oðx=xgÞ�1.

3. The theoretical predictions are also plotted for
frequencies above the attempt frequency to illustrate the
models behavior over a wide range. However, one should
note that physically the model likely makes little sense at
such frequencies. A central element of the SGR model is
that the local behavior is elastic. This requires a separation
of time scales between the loading frequency and the
attempt rate frequency. If the loading frequency is of the
order of the attempt frequency then the local behavior
cannot sensibly be modeled with an elastic model. In this
case, a local viscoelastic response would be more appro-
priate, which then greatly complicates the evaluation of the
theory. As a rule of thumb, the SGR model should be
limited to applications where ooG0=10; this will guarantee
the needed separation of time scales.

5. Comparison of cytoskeleton and soft glassy rheology

In Fabry et al. (2001) it has been observed that the
cytoskeleton possess the properties of a SGM and thus
there is the possibility of modeling the cytoskeleton using
the SGR model of Sollich and to learn more about its
functioning. Here we examine where this modeling
assumption succeeds and where further efforts are needed.
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5.1. Viscoelastic function comparison

The data in Fabry et al. (2001, 2003) was originally fit
quite well using the empirical model in Eq. (9) and
produced a result that showed that drug interactions only
changed the effective noise parameter and not the other
model parameters. This astonishing selectivity is very
attractive in terms of model building. For direct compar-
ison to the SGR model we can fit Eq. (18) to the same data.
In this fitting process we can use the slope of the data to
determine x=xg and then we can use regression to
determine k and G0 in the SGR model. Our best fit is
found using a single G0 � 10Hz; see Fig. 6. Unfortunately,
the drug treatments affect more than one parameter in the
SGR model unlike what was seen with the empirical model.
In the SGR model we find that the local elasticities also
vary with drug treatment. The variation of the local
elasticities with drug treatment; however, is still quite
sensible relative to the biochemical activities of the drugs
used.

5.1.1. Storage modulus

The storage modulus G0 from the data and the SGR
model match each other well even up to o=G0�1 where we
cannot expect good agreement. This promising behavior
also gives us the interpretation that mechanistically the
cytoskeleton possesses a linear log–log relaxation-time
spectrum and further that for the storage modulus the
cytoskeleton is well modeled by the SGR model with an
initial equilibrium noise state above the glass transition. It
is further possible to have good agreement for the storage
modulus over the entire range of the data up to 1000Hz by
changing G0 to 1000Hz. However, this causes problems
with the fitting of the loss modulus; see Fig. 7.

5.1.2. Loss modulus

A comparison of the G00 behavior of the SGR model and
the data yield good results with the choice of G0 ¼ 10Hz.
We can see that the SGR prediction is quite close to the
data and that the two do not deviate until one reaches
frequencies o=G0X

1
10
and in this range we have no right to

expect that the SGR model will produce reasonable results.
It should be observed that the more glassy the system is,
the better the match is to the SGR model. The higher noise
systems seem to start to deviate from the SGR model at
lower values of o=G0. One could consider adjusting G0 to a
lower value for these systems but then the very good fit for
the storage modulus will be limited by this low value of the
attempt frequency; see Fig. 4. It would be an interesting
exercise to try and find an independent means of assessing
the local attempt frequency. This would then allow for a
more reasoned discussion of the fit of the storage and loss
modulus to the SGR model.

Remarks.

1. The above comparisons with the SGR model all assume
that the systems are near equilibrium. They are based on
the presumption that the strains are small and that the
initial probability distribution of states is the equilibrium
distribution. If the system is not near equilibrium at the
time of the measurements then it can be quite difficult to
interrogate the SGR model for its predictions. If the
deviations from equilibrium are due to large strains away
from an equilibrium state then there are some possibilities
for solving the SGR equations. Efforts in this direction can
be found in Trepat et al. (2007) where good agreement
between the SGR model and cytoskeleton data are seen.
2. The data discussed was originally fit in Fabry et al.

(2001, 2003) using the empirical relation Eq. (9). A
comparison of this empirical relation with the SGR model
equations shows that they have effectively utilized a G0 on
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the order of 108 Hz. This provides for a good fit to the
storage modulus data over its entire range but then suggests
that the loss modulus data begins to deviate from the SGR
model around o=G0 � 10�7—well within the expected range
of validity of the SGR model. Thus the slower rate of 10Hz
proposed above seems to provide a more consistent
correspondence between the SGR model and the data—
even if the range of matching is somewhat reduced.

5.2. Non-equilibrium issues: aging

In the previous section, the behavior discussed, storage
and loss moduli for the cellular systems in Fabry et al.
(2003), can be explained in three nearly equivalent ways:
(1) using the empirical fitting equation Eq. (9), (2) using the
SGR model, or (3) by a classical rheological model with a
linear log–log relaxation-time spectrum. The three options
have their pluses and minuses but one can say that option
(2) provides the most flexibility in that it also allows for
nonlinear viscoelastic behavior and further presents the
possibility of realistically modeling behaviors associated
with noise temperatures below xg. This added feature of the
SGR model is attractive as recent measurements have begun
to show such behaviors in the cytoskeleton. Generically,
these features go by the names of aging and rejuvenation. It
should be emphasized that there are two basic types of
aging/rejuvenation behavior present in the SGR model:
1.
 One type of aging/rejuvenation behavior is due to large
strain effects in the effective material clock; see e.g.
Bursac et al. (2005), Trepat et al. (2007), Reese and
Govindjee (1998) and Govindjee and Reese (1997). These
effects manifest themselves in the SGR model via
the nonlinear material clock; see Eq. (C.6) in part C of
the Supplement. In this situation, straining pushes the
material state far from equilibrium and nonlinear
relaxation takes place to bring the material back to
equilibrium (the rejuvenation). If the time scales are
sufficiently separated, then aging type behavior will be
observed; i.e., one will see time dependent behavior in
storage and loss modulus measurements over the time
period required to bring the system back near equili-
brium. Such aging/rejuvenation behaviors can be present
at noise temperatures above xg and it has been shown in
Trepat et al. (2007) to be consistent with the SGR model.
2.
 The second type of aging behavior occurs strictly below
xg. Below xg a normalizable stationary probability
distribution does not exist in the SGR model. Thus
the state of the system constantly evolves and the
properties of the system constantly change or age. This
is the usual type of aging that is referenced in literature
dealing with glassy systems. It deals strictly with the
evolution of the sub-scale dynamics of the material
which do not possess a steady state solution.

As mentioned, for xoxg, the SGR model displays aging
characteristics, and, in recent experimental results by
Bursac et al. (2005), indicators of glassy aging in the
cytoskeletal mechanical response have been measured in
cultured cells. One of the basic experiments performed
showed that a tracer bead attached to the cytoskeleton
diffuses in a manner that is inconsistent with equilibrium
diffusive behavior (Stokes–Einstein behavior); see Figs. 3
and 4 in Bursac et al. (2005). This behavior occurs in
unperturbed cells that one would nominally think of as
being in equilibrium. The implication of the observed time
scaling behavior is that the cell culture is actually below its
glass transition temperature. This conclusion is, however,
inconsistent with the fact that one can well fit storage and
loss modulus data for the cytoskeleton using a noise
temperature x4xg. One possible explanation for this
inconsistency is that the cell cultures in Bursac et al.
(2005) were above xg but prepared out-of-equilibrium. The
required degree of out-of-equilibrium preparation can be
estimated using the creep experiments in Bursac et al.
(2005); see their Fig. 1. This data show that the system
displays out-of-equilibrium behavior for over 8000 s. This
implies that the system has a high degree of energy well
occupancy for states with E=x4 lnð8000G0Þ � 11:2, where
we have assumed that G0 ¼ 10Hz. In equilibrium, only
about 10% of the system should occupy states with
E=x411:2, assuming x=xg ¼ 1:2. The likelihood of this
occurring is finite but low since it would require moving the
system out of 90% of the states which it preferentially
occupies in equilibrium. Thus we are left with an
inconsistency between the data and the SGR model. In
order to settle this question, one would need experiments
designed to measure the underlying dynamic structure of
the SGR model.

6. Concluding remarks

The modeling of the rheological behavior of the
cytoskeleton is a challenging subject that has recently been
the subject of a number of studies. In this article we have
endeavored to provide the reader with a concise review of
the structure of classical linear rheological modeling, the
SGR model, and the relation of these two frameworks to
some recent rheological measurements on the mechanical
response of the cytoskeleton of cultured cells.
The measured data are of several types: (1) frequency

sweep measurements of storage and loss moduli at
low amplitude motion, (2) measurement of the local
Brownian dynamics of the cytoskeleton and (3) probes of
the relaxation behavior of the cytoskeleton after large
perturbations. If we wish to be able to treat all three
types of data in a single model then we require a model
that incorporates not only linear and nonlinear visco-
elastic behavior but one that also contains a sub-scale
dynamic component. This sub-scale dynamic component is
required if we are to be able to model Brownian motion
type experiments. In this regard the most promising
modeling framework available to us is the SGR model of
Sollich.
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As shown above, the SGR model can be interpreted
above the glass transition noise temperature as a classical
linear rheological system with a linear log–log relaxation-
time spectrum with a slow mode cut-off time when the
initial sub-scale energy distribution is taken as the
equilibrium one. This feature allows the SGR model to
model data of type (1). Also this model has the added
feature of being able to predict data of type (3) due to its
embedded nonlinear clock. Analysis of the model in this
range of motion is somewhat complicated due to the
structure of the equations but qualitatively it has been
shown to correlate well with experimental data. The SGR
model has the further added feature that it is capable to
predicting sub-scale dynamics, type (2) data, and in
particular for noise temperatures below the glass transi-
tion. These predictions are rather dependent upon assump-
tions about the initial probability distribution for the
system but within reasonable assumptions the model
provides testable predictions. It is here, however, that we
find some difficulties in employing the SGR model as a
model for the cytoskeleton’s mechanical response. The
bead tracer data indicates that the cytoskeleton is in a
glassy condition due to violations of the Stokes–Einstein
rule. But one has, on the other hand, the fact that types (1)
and (3) data are well explained by the SGR model using
noise temperatures above equilibrium. The contradiction is
difficult to resolve even if one is willing to accept the
possibility of a non-equilibrium system preparation above
the glass transition noise temperature.

Due to the strong positive predictions of the SGR model,
it is worthwhile to consider appropriate means to reconcile
the contradictory observations of simultaneous above and
below glass transition behavior. In our opinion, further
efforts should be devoted to independently measuring the
sub-elements of the SGR model—in particular the attempt
rate and the evolution of the internal probability distribu-
tion. In performing such measurements, care should be
taken to probe within the linear and nonlinear relaxation
regimes as determined by the effective clock of the material.
As a closing word of caution, we should, however, mention
that none of these modeling efforts account explicitly for
the fact that the cytoskeleton exists within a living cell with
its own internal energy source. It is quite conceivable that
this energy source serves to constantly perturb the system’s
probability distribution away from the assumed stationary
one.
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