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Abstract

Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural
models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely
ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The
objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics. In vitro
the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of
microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place
mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These
lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly
accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics. One of the
promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex
network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing
microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics.
However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the
model’s underlying assumption that ‘‘every single member bears solely either tensile or compressive behavior,’’ i.e.
neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules
and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our
results suggest that the bending energy can exceed the axial energy of microtubules by 40 folds. A modification to
tensegrity model is, therefore, proved necessary in order to take into account the flexural response of microtubules. The
concept of ‘‘bendo-tensegrity’’ is proposed as a modification to contemporary cytoskeletal tensegrity models.
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Introduction

Living cells actively respond to their mechanical environment,

altering their proliferation rate, cytoskeletal configuration, and gene

expression pattern when exposed to a mechanical perturbation. The

details of how cells sense mechanical signals and how mechanical

signals are transduced and transmitted from the extracellular matrix

(ECM) throughout the cell have remained ambiguous [1,2]. This

has motivated quantitative models for the cytoskeleton [1], as a

mechanical structure hosting and participating in signaling

pathways of the cell [1,2,3]. Among these models, the cytoskeletal

tensegrity model (see Fig. 1) has received traction in elucidating

several aspects of the cellular response to mechanical stimuli. The

model describes the cytoskeletal filaments as discrete members that

come together to form a discontinuous, so-called tensegrity (tension

integrity) structure [4,5,6,7]. A tensegrity structure, by definition,

must fulfill an important criterion: It should be composed of only

tensile and compressive members, meaning that each and every

member must bear either pure tension or compression. Further-

more, the tensegrity structure should be free from any shear-

introducing structural behavior (i.e. bending and torsion) [8]. Such a

condition would imply that all members must be straight, all joints

must be moment-free (or hinge), and finally, loads should be applied

exclusively to joints [9]. Additionally, a tensegrity structure owes its

stability to the pre-existing tensile stress (pre-stress) in its members,

since its slender members could transfer the load only when they are

under tension [5].

In most eukaryotic cells, the cytoskeleton comprises three types

of filaments: actins, microtubules, and intermediate filaments (see

Fig. 2) [10]. Experimental studies have shown that actins and

intermediate filaments can sustain only tension because of their

small cross-sections, whereas microtubules are mostly subjected to

compression. Furthermore, the presence of pre-stress in the

cytoskeleton has been indicated in several studies [5,6,11,12].

Compression and buckling of microtubules in adherent cells

counterbalance some 5% to 30% of the tensile pre-stress [5,6],

while the rest is supposedly counteracted by the ECM [1].

Given its simple incorporation of the structural pre-stress as well

as tensile and compressive behavior of the load-bearing members,

the tensegrity model provides a robust tool for cytoskeletal

modeling and analysis. Nevertheless, this approach has its

drawbacks, especially when it comes to the mechanics of

microtubules. In this paper, we explore the consistency of the

tensegrity hypothesis with the experimental observations on

mechanical behavior of microtubules as compressive members of

the cytoskeleton, and motivate a modification to this model.
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Methods

Unlike other cytoskeletal filaments, such as actins and interme-

diate filaments that work together as a network, microtubule

filaments typically respond to mechanical excitations as individual

structural elements [13]. Molecular structure of microtubules differs

from typical polymers as they have considerably larger persistence

lengths. From this viewpoint, microtubules behave more like rigid

bars. As one of the most rigid cytoskeletal components, microtubules

provide support for the cell to maintain its shape [13,14,15]. Rigidity

of the microtubule filament results largely from its hollow cylindrical

shape, composed of a-b tubulin heterodimers that form protofila-

ments [16]. The microtubule structure is composed of 13 parallel

protofilaments oriented longitudinally [17]. Microtubules play

critical roles in cell motility, growth, mitosis, and meiosis [10], and

act as tracks for motor proteins to carry cargoes across the cytoplasm.

The rapid polymerization and depolymerization of microtubules

give rise to formation of highly dynamic structures [18].

The outer and inner diameters of microtubules are 25 nm and

17 nm, respectively (see Fig. 3). The length of microtubule

filaments varies from tens of nanometers to hundreds of

micrometers [10], yet at least an order of magnitude less than

their persistence length, which is reported to be 0.2–9 mm [18].

However, previous experimental studies have shown that even

though the persistence length of microtubule filaments is far

greater than their lengths, microtubules do not necessarily appear

straight in the cytoskeleton; rather they exhibit periodic curves (see

Fig. 4 and 5), suggesting that microtubule filaments sustain

compressive forces and hence buckle under compression [5,6,11].

As depicted in Fig. 3, microtubules polymerize in two different

ways, shaping two lattice forms named as A-lattice and B-lattice,

with distinct flexural rigidities. Cytoskeletal microtubules are

mostly of the A-lattice type while B-lattice type mostly forms when

spontaneous polymerization occurs in vitro [18].

Many researchers have attempted to measure the buckling load

of single microtubules [11,17,19]. Interestingly, the critical

Figure 1. A typical tensegrity model used to simulate the cell cytoskeleton [8].
doi:10.1371/journal.pone.0025627.g001

Figure 2. Network of cytoskeletal filaments [5,8].
doi:10.1371/journal.pone.0025627.g002
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buckling load of microtubules in living cells is two orders of

magnitude larger than what microtubule filaments show in vitro

[17]. In addition, individual microtubule filaments buckle in the

first mode in vitro, while they are often observed to buckle in short

wavelengths in living cells (see Fig. 4). The critical axial load of a

simply-supported beam composed of an isotropic linear elastic

material can be calculated as:

Pn~
n2p2EI

L2
, ð2Þ

where n, E, I and L are the microtubule’s buckling mode number,

elastic modulus, cross-section’s second moment of inertia, and

contour length, respectively [20]. Pn is called the nth Euler load, or

the buckling mode number, of the beam. For a beam with a

rectangular cross-section and transverse isotropic material this

relationship should be modified as:

Pn~
n2p2EI

1z
h

L

� �2
E

Et

 !
L2

, ð3Þ

where h, E, and Et are the beam depth, longitudinal Young’s

modulus, and longitudinal-transverse shear modulus, respectively

(see Fig. 6) [21]. Note that Eq.3 simplifies to Eq.2 at small h/L

ratios, and takes the same form for cylindrical and rectangular

cross-sections. In this study we model a single microtubule filament

as a transverse isotropic, hollow beam as suggested by the latest

studies [22,23].

A series of analyses were conducted using a commercially

available finite element software package ADINA 8.6 (ADINA

R&D, Watertown, MA), aimed at estimating the bending strain

energy induced by the lateral linkers and comparing it with the

axial strain energy caused by axial forces applied at ends of a single

microtubule. Towards this goal, the microtubule filament is

simulated by a continuum model of a simply-supported beam. To

model a typical microtubule of 13 protofilaments with 3 starts, a

one-micrometer-long hollow cylinder with corrected inner and

outer radii of 9.9 and 11.5 nm, was employed as proposed by Shen

[22]. Bonds between tubulin dimers are believed to be significantly

stronger along the protofilament’s longitudinal direction than

those on the microtubule cross-sections perpendicular to its axis

[16], justifying a transverse-isotropic material model for microtu-

bules as adopted in this analysis.

Two scenarios are considered: (i) an isolated microtubule

filamement subjected to only one critical axial load (i.e. the force

that causes the microtubule to buckle); (ii) the identical

microtubule filament bearing an axial compressive load as large

as its critical buckling load while being supported at constant

intervals along its length by identical lateral forces in vivo (see

Fig. 6). Scenario (i) mimics the case for in vitro microtubule

buckling tests while case (ii) is a typical condition of the

microtubule when embedded in the filamentous milieu of the

cell. Experimental data indicate that the critical load in case (ii) is

Figure 3. Geometry of a microtubule [13].
doi:10.1371/journal.pone.0025627.g003

Figure 4. Buckling pattern of a single microtubule during
contractile beating of heart cells [36].
doi:10.1371/journal.pone.0025627.g004

Figure 5. Buckling of a fluorescently-labeled microtubule in
living endothelial cells following cell contraction induced by
thrombin. (A) The microtubule is fairly straight before the application
of the load, and (B) it buckles in small wavelengths when it is loaded.
The scale bar is 2 mm [1].
doi:10.1371/journal.pone.0025627.g005

Microtubule Flexural Behavior

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e25627



two orders of magnitude larger than that in case (i) [14]. Since all

mechanical and geometrical properties of the two microtubule

filaments (e.g. their bending stiffness and length) are identical, this

discrepancy should stem from different boundary conditions,

reflected in buckling mode numbers, n (see Eq. 3), that determines

the microtubule’s buckled shape. Microtubules buckle in mode

number one, shaping like a half cycle of a periodic curve, if they are

laterally unconstrained. For the higher mode numbers to take place

far greater deformation energies are required, thus they occur less

likely if the microtubule filament is not restrained laterally. Both

cases mentioned are typical idealized loading conditions to evaluate

the order of magnitude of flexural energy stored in a microtubule as

a result of subsequent linkages to its filamentous surrounding.

Although randomness of the connection intervals imposes a high

variance to this calculation, we seek for an average value of flexural

energy that is sustained by the microtubule in a typical cytoskeletal

environment. Importantly, any wave shape formed by an arbitrary

loading condition could be decomposed into a combination of

different buckling mode numbers.

According to Eq.3, the mode number that yields a critical

buckling load of two orders of magnitude greater than the first

mode is mode number 10. Practically, however, the tenth mode

occurs when there exist nine additional lateral supports.

Therefore, it is assumed that there are on average nine linkages

between the microtubule and its adjacent filament network. For

the sake of simplicity, forces applied by supports are all identical in

distribution and each force has opposite direction to its neighbors.

This is a typical distribution which would yield a periodic

deflection pattern. Additionally, it is speculated that forces are

exclusively applied by actin linkages. Linkages between microtu-

bules and actins or intermediate filaments are formed by a series of

participating proteins. It is reported that some proteins, including

kinesin, myosin, plectin, and MAP2c, are potential linking agents

of actins and intermediate filaments to microtubules [24,25,26,27].

Generally, two actin-microtubule cross-linking mechanisms are

proposed [25]: regulatory and structural connections. The scope of

this paper is limited to structural linkages wherein a physical

connection exists between actins and the microtubule. These

connections enable actins to support the microtubule when they

are under tension [25].

Since linkages appear as series along the microtubule length, the

overall configuration of an actin-microtubule connection resembles

the deck-main cable connection in a suspension bridge (see Fig. 7).

In this analogy the microtubule acts as the bridge deck because of its

high flexural stiffness that gives rise to its substantially lower

curvature relative to the actin filament, which is thought of as the

main (curved) cable of the suspension bridge. Therefore, we neglect

the microtubule local curvature as compared to the actin curvature

at the linking zone. Straight vertical cables, on the other hand,

would play the role of the linkage proteins, connecting the

microtubule and actin filament. In addition, the entire structure

and loads are assumed to remain in a plane.

Lateral supporting of the microtubule filaments originates

largely from the neighboring filament network but the surrounding

viscous cytosol could also exert lateral forces when the filament

moves laterally as it buckles. In addition to the elastic deformation

of the surrounding cytoskeletal network, the buckling motion

induces a viscous flow in the cytosol [14,28,29]. However, the

viscous part of the lateral load gradually vanishes and eventually

the microtubule filament is left with a lateral support coming solely

from the filament network [14,23,30]. Hence, the strain energy

calculation in our model applies to the case when the microtubule

is supported only by its neighboring filaments. It is worth

mentioning that a slippery ionic layer around microtubule

filaments prevent the shear interaction between microtubules

and their mechanical surrounding [23]. Therefore, in our model

shear stresses exerted on the microtubule by its surrounding

cytosol are neglected.

Results

To incorporate mechanical effects of other cytoskeletal filaments

on microtubules, most researchers have simulated a microtubule

filament as a beam surrounded by an elastic continuum

[14,22,23,31]. However, the filamentous actin network is far from

a continuum, and moreover, the connections between these actin

filaments and microtubules are formed in discontinuous, limited

intervals. In this study, a semi-discrete method is adopted and it is

assumed that loads on the microtubule filament are applied at

alternating continuous intervals (see Fig. 6), whereas load

distribution pattern for each interval will be derived in the

following.

Depicted in Fig. 8 are the connection details of an actin filament

(red) and a microtubule (green) by vertical linkages in one

connection length as described in our model. Using the force

Figure 6. Mechanical models used to estimate the axial and bending energies of the microtubule. (A) A microtubule is modeled as a
simply supported beam, being supported by an average number of nine intermediate filaments in constant intervals and each having opposite
directions to its neighbors. Load distribution functions over the connection lengths (Q(x)) is derived in the text. The connection length is denoted by l
and the beam depth by h. (B) To estimate the axial energy the microtubule model is considered to be under a uniform compressive load. This load
equals the critical buckling load of the microtubule when the beam is hinged at its two ends.
doi:10.1371/journal.pone.0025627.g006
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equilibrium and free body diagram sketched in Fig. 8, one can

write:

T0Cosh0~T(x)Cosh; ð4:aÞ

T0Sinh0{T(x)Sinh~

ðx
{l=2

Q(x)dx, ð4:bÞ

where T0 and T(x) are the actin axial forces in the beginning of the

interval and at the position x from the interval center, where x

could vary between 2l/2 and l/2. Here, h0 and h are angles

between the actin filament tangent and microtubule direction in

the beginning of the interval and the position x. Q(x) is an

unknown load distribution function over the interval length.

Assuming that the connection proteins act like linear springs with

stiffness k and with dimensions dx and dz along the microtubule

length and perpendicular to it, respectively, we have:

Q(x)dx~kdxdz(y(x){y0), ð5Þ

where y0 and y(x) are the lengths of a single linker protein at

position x along the microtubule length before and after the actin

filament is loaded. Substituting (5) in (4.b), combining (4.a) and

(4.b), and differentiating with respect to x yields:

T0Cosh0

kdz
z

d2y

dx2
{yzy0~0 ð6Þ

Solving the differential equation results in:

y~
Tanh0

m e
ml
2 {e

{ml
2

� � emx{e{mxð Þzy0 ð7Þ

m~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0Cosh0

kdz

r
ð8Þ

And finally, substituting (7) in (5), we obtain the load distribution

as a function of x:

Q(x)~kdz
Tanh0

mSinh
ml

2

� �Sinh(mx), ð9Þ

which is the estimated load distribution corresponding to one

microtubule-actin connection. Identical load distributions are

assumed at the other eight connections (see Fig. 6). This leads to a

semi-discrete loading pattern that attempts to mimic the filamentous

environment around the microtubule filament. Using concentrated

point loads in our continuum model resulted in considerable stress

concentrations, which induced mostly localized deflections in the

microtubule rather than a harmonic deflection in the microtubule

body as a whole; a semi-discrete loading yields a deflection profile

reminiscent of physiological observations (see Fig. 5).

The axial load sustained by actins (T0) is assumed to be 50 pN,

similar to a typical physiological stretch [32]. The linker protein

stiffness (k) and cross-sectional dimension (Dz) are taken as

Figure 7. Analogy between a microtubule-actin connection and a suspension bridge. (A) Immunofluorescently labeled rat thoracic aorta
cells illustrates actin (red) and microtubule (green) networks. (http://learn.hamamatsu.com/galleries/digitalimages) (B) Connections between actin
filaments (red) and microtubules (green) in growth cones from Aplysia bag cell neurons [25]. (C) A schematic view of the microtubule-actin
connection via linking proteins [25] (D) In a suspension bridge the main curved cable is attached to the relatively straight deck by several vertical
cables. (The analogy area is boxed.) (http://www.travelpod.com/).
doi:10.1371/journal.pone.0025627.g007
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0.15 pN/nm and 2 nm based on values reported for myosin

[32,33]. Other model properties are listed in Table 1. For several

values of L and h0, the load distribution function for a single

microtubule-actin connection is calculated and presented in Fig. 9.

For each value of L, the load applied on the microtubule by the

actin filament increases monotonically with h0 (see Eq.9).

However, there is an upper limit imposed in practice: linking

proteins generally cannot transfer loads more than ,5 pN per

protein [33]. This criterion limits h0 to small values (less than

about 18u).
For distributions with higher connection lengths (l), Q(x) confers

lower values as expected. Interestingly, however, larger connection

lengths give rise to sharper distribution patterns with smaller

minima. If this length is smaller than 20 nm, the single linker load

exceeds 5 pN, and if it is larger than 50 nm it induces abnormal

deflections in the microtubule. Considering these criteria, the

allowable load distributions were determined and applied on the

microtubule filament model (Fig. 6.a). The model was analyzed

using the finite element method to attain the bending strain energy

corresponding to each distribution. Since in vivo microtubules are

observed to buckle under compressive loads, the analysis of the

microtubule model was conducted one more time with a

concentrated, compressive load (200 pN) at its ends to compute

the axial strain energy for a buckled microtubule (Fig. 6.b).

A microtubule deflection pattern is illustrated in Fig. 10. To

reduce the computational cost, symmetry of the microtubule

geometry is invoked. Half cross-section of the microtubule with full

length was employed to compute the axial energy while the

microtubule half cross-section with half length was used to

simulate the laterally supported microtubule. Surprisingly, despite

the significant differences in the load distributions due to various

connection lengths, the bending energy versus h0 (we call it start

angle) distribution curves fall in a narrow band (see Fig. 11).

The axial energy corresponding to the critical load remains

unchanged as the connection length increases and it is almost

equal to the bending energy at small start angles (less than 4u).
Nevertheless, the bending energy increases exponentially as the

start angle is increased until it reaches up to 40 times the axial

energy stored in the microtubule filament. This implies that the

cytoskeletal structure under normal physiological loads stores a

Figure 8. Details of the free body diagram for a microtubule-actin connection length. (Top) The actin filament (red) is connected to the
microtubule (green) via linker proteins, which are substituted here by their mechanical effect as vertical forces. T0 is the tensile force sustained by the
actin filament, h0 is called the start angle, and Q(x) represents load per unit length (Bottom) a cut-out region of the connection length is illustrated.
The red dashed and solid lines represent the actin filament before and after the axial loading. In an unloaded status the actin filament should stay
parallel to the microtubule so that no linker protein is mobilized. After the loading, as T0 direction is not necessarily parallel to the microtubule linker
proteins take different lengths.
doi:10.1371/journal.pone.0025627.g008

Table 1. Microtubule material and geometric parameters.

Young’s Modulus Poison’s Ratio MT length MT Inner radius MT Inner radius

Eyy = Exx = 1 Mpa Ezz = 1 Gpa nxy = nxy = 0.03 nrz = 0.3 1 mm 9.9 nm 11.5 nm

doi:10.1371/journal.pone.0025627.t001
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considerable amount of flexural energy, at least in microtubules.

This observation and the notion that the bending energy is

induced by the connection of microtubules to actin filaments,

which are tensile cytoskeletal members, leaves us with a structure

whose tensile members are jointed to its compressive members not

necessarily at the end points. These tensile members apply an

Figure 9. Microtubule-actin connection load distribution is a function of the angle h0 and the connection length.
doi:10.1371/journal.pone.0025627.g009

Figure 10. Microtubule deformation under lateral load. Deflection is not to scale; the picture illustrates a microtubule half cross-section with
half length. Normal strain parallel to the loading plane and orthogonal to the microtubule axis is illustrated in the picture (ezz).
doi:10.1371/journal.pone.0025627.g010
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ample amount of bending to microtubules and this violates one of

the basic tensegrity assumptions.

Discussion

The tensegrity model for the cytoskeleton has received

considerable traction in the cell mechanobiology literature. It

models the cytoskeleton as a combination of several struts and

cables [1,2,5,6,8,11,34,35]. The cellular tensegrity model success-

fully explains several observations in mechanics of the cell,

including the cytoskeletal pre-stress, discrete nature of the

cytoskeletal network, and the action-in-distance phenomenon

[4,5,6]. Furthermore, simulation of the cell based on the tensegrity

assumption is both easy and computationally efficient. Nonethe-

less, the tensegrity model comes short of taking into account the

flexural response of microtubules, which introduces a significant

error in the mechanical analysis of the cytoskeleton. Theoretically,

an axially loaded beam could reach equilibrium in any arbitrary

mode. However, beyond the first critical load the beam assumes

an unstable equilibrium in which any subtle change in its shape

leads to destabilization. It is therefore unlikely that a free

microtubule filament reaches higher buckling modes while being

bombarded by the surrounding Brownian forces. As a result, the

high critical load and buckling strength of microtubules in vivo

should be attributed to some kind of lateral bracing of

microtubules in the cell milieu. In fact, microtubules in the living

cell environment are surrounded by an interconnected network of

actins and intermediate filaments. Some researchers suggest these

connections may provide lateral support for microtubules, which

could be sufficient for preventing them from buckling in the first

mode [6,36,37]. Because the contour length and bending rigidity

(EI) of microtubules studied are identical in isolated (free)

microtubules in vitro and in living cells, the difference in the

critical loads could only pertain to their buckling mode numbers.

The unsupported microtubule simply buckles in the first mode, but

the microtubule constrained by its surrounding buckles in higher

modes.

Conducting a mechanical analysis on a single microtubule

connected to actin filaments at nine intervals, a physiologically

probable load distribution was represented here to the microtu-

bule. It was shown that when the cytoskeleton is loaded, which is

always the case in adherent cells, the microtubule filament’s high

bending capacity is mobilized due to the stretch of actins and

intermediate filaments connected to microtubules. Actin filaments

reportedly sustain up to 110 pN in vivo [32] and their binding to

microtubules induces a considerable flexural behavior in micro-

tubules. Actin and intermediate filaments are mostly crosslinked to

each other somewhere in the middle of their lengths and not

necessarily at their ends. This does not cause a problem in our

tensegrity modeling of actins and intermediate filaments as we can

still assume the free lengths of actin and intermediate filaments

between two connections each as a tensegrity member (hinge-

ended). This, however, is not applicable to microtubules because

of their strong cross-section and high moment-bearing capacity. If

we assume the microtubule’s free length between two actin

connections as a tensegrity member, this member is no longer

hinged to its neighboring members. The underlying principle here

states that the large bending rigidity of microtubules do not allow

us to neglect their flexural behavior when they are subjected to

lateral forces. The ratio of the characteristic bending energy of the

filament to the characteristic thermal energy of the environment

(Eq.10) determines the significance of the bending behavior

induced by the thermal environment [38]:

j~
EI

kBTL
ð10Þ

The value of j for microtubules is always larger than 200, which

indicates that the mechanical effect of the thermal environment is

negligible and microtubules could be modeled reasonably with

elastic rods rather than flexible chains.

From a nanoscale perspective, material properties of microtu-

bule filaments are size-dependent, which calls for an adjustment in

microtubule continuum models, namely the ‘‘non-local continuum

theory’’ [19]. Yet, the continuum theory is sufficient for the

purpose of our analysis, firstly because in the physiological

temperature (37uC) and for high length to characteristic radius

ratios (L/R.100), as assumed in this study, non-local effects are

fairly small (around 10%) and length-independent [16,17,19].

Additionally, the primary goal of this paper is to conduct a scaling

analysis and compare the scales of bending and axial strains built

Figure 11. Comparison between microtubule bending strain energy induced by the lateral connection to actins, and the
microtubule maximum axial strain energy under critical buckling load.
doi:10.1371/journal.pone.0025627.g011
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up in a microtubule filament, rather than performing a detailed

analysis of the microtubule. Treating microtubules as isotropic

solids, rather than transverse-isotropic continua, has been another

source of variation in flexural rigidity calculations based on

experimental values of persistence length in many of previous

studies [16,17].

The current tesegrity-based models largely neglect the support

that actins and intermediate filaments provide for microtubules,

which on average produces a 100-fold increase in the sustainable

axial load borne by microtubules. In addition, our analysis

indicates that the bending strain energy stored in a microtubule

when the actin filaments are under tension could exceed the axial

energy caused by the compressive force, by at least an order of

magnitude. Such domination of the flexural behavior in

microtubules clearly violates the tensegrity presumption. A

meaningful amount of the external work done on the cell is spent

to bend microtubules. In case the flexural behavior is neglected,

the analysis would mistakenly redistribute this extra energy as an

additional axial energy between the members, conferring wrong

amounts of axial forces and displacements for the elements and

nodes.

In order to address this drawback, one can envision a ‘‘bendo-

tensegrity’’ model for a more accurate representation of

microtubule’s role in cell mechanics. Similar to the tensegrity

model, in a bendo-tensegrity model the actin and intermediate

filaments solely bear tension, but the flexural response of

microtubule filaments as well as their compressive action are

taken into account by connecting nine tensile filaments at even

intervals along the length of each microtubule. Therefore, while

preserving the discrete nature of the model and its simplicity to a

great extent, significantly more accurate predictions of the cell

deformation pattern and force distribution among the cytoskeletal

members could be achieved. Cytoskeletal networks mapped by

imunofluorescence imaging can supply the bendo-tensegrity model

with a temporal configuration and the output would be the

temporal distribution of forces among the cytoskeletal members.

Estimating the force in cytoskeletal filaments is essential to cell

behavior studies specifically cell migration and focal complex

formation.

This study demonstrates that an accurate perspective of the

cytoskeleton is only achievable if we employ microtubule filaments’

bending capacity. This can be accomplished by mounting

microtubules with additional cables attached to them to represent

the crucial role of the intermediate or actin filaments. Finally,

coupling of computational works employing the bendo-tensegrity

model with experimental cell mechanics studies will open up a new

area of cell mechanics modeling that could be a promising subject

for further research.
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