
www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engrg. 196 (2007) 2965–2971
A computational study on power-law rheology of soft glassy
materials with application to cell mechanics

A. Vaziri a, Z. Xue a, R.D. Kamm b, M.R. Kaazempur Mofrad c,*

a School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
b Department of Mechanical Engineering and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA, United States

c Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, CA 94720, United States

Received 13 February 2006; received in revised form 27 June 2006; accepted 28 November 2006
Abstract

Response of the cytoskeleton to mechanical stimulus, which involves coordinated assembly and disassembly of cytoskeletal polymers
and their coupling to motor proteins, has been shown to be governed by a ubiquitous mechanical behavior called power-law rheology.
Various experimental techniques in cell mechanics have yielded similar qualitative observations and quantitative behavior indicating that
the power-law rheology is an intrinsic feature of the cell structure. In this study, a biomechanical model of the cell in microbead twisting
experiments is developed which incorporates the material law associated with power-law rheology using the finite element method. Such
a biomechanical model can help elucidating the mechanics of cytoskeletal responses and relate the microrheology of the cytoskeleton to
its overall behavior under mechanical stimulus. This biomechanical model is employed to explore the role of material constants associ-
ated with power-law rheology on the overall response of a cell in magnetic twisting cytometry. Furthermore, the computational approach
is employed to mimic the experimental observations of [B. Fabry, G.N. Maksym, J.P. Butler, M. Glogauer, D. Navajas, J.J. Fredberg,
Scaling the microrheology of living cells, Phys. Rev. Lett. 87 (2001) 148102; B. Fabry, G.N. Maksym, J.P. Butler, M. Glogauer, D. Nava-
jas, N.A. Taback, E.J. Millet, J.J. Fredberg, Time scale and other invariants of integrative mechanical behavior in living cell, Phys. Rev.
E, 68(4) (2003) 041914] on living cells.
� 2007 Published by Elsevier B.V.
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1. Introduction

Numerous biological processes are influenced by
mechanical stimulation, making the rheological properties
of living cells critical to their function. Recent experiments,
carried out over a range of length scales using different
methods, have shed light on dynamic responses of the cyto-
skeleton to mechanical perturbation [2–10]. These experi-
ments indicate that the cell response over a broad
frequency spectrum is governed by a ubiquitous mechani-
cal behavior called power-law rheology which is an intrin-
sic feature of many soft materials such as emulsions, pastes,
foams and colloids [11–15]. These materials which all fall in
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the category of soft glassy materials are composed of
numerous discrete elements that experience weak interac-
tions with inherently disordered and metastable micro-
structural geometry. The complex dynamics exhibited by
these materials, which exists far from thermodynamic equi-
librium, exhibits power-law frequency dependence with no
single characteristic frequency or timescale. The material
law in the frequency domain for soft glassy rheology, in
which the storage and loss moduli depend on the excitation
frequency with the same power exponent and have a con-
stant ratio, is in the form of

G0ðxÞ ¼ G0ðx=x0Þx�1 cos ðx�1Þp
2

h i
;

G00ðxÞ ¼ G0ðx=x0Þx�1 sin ðx�1Þp
2

h i
;

1 6 x 6 2; ð1Þ
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where G0ðxÞ and G00ðxÞ are the frequency-dependant shear
storage and loss moduli of the material, respectively, x is
the radian frequency of excitation and x is identified as
being the ‘noise temperature’. G0 denotes the shear storage
modulus of the material at the glass transition (x = 1) and
x0 is the reference frequency. This material law also can be
represented in the form of

G0ðxÞ ¼ G0ðx=x0Þx�1 cos ðx�1Þp
2

h i
;

G00ðxÞ ¼ gG0ðxÞ;
1 6 x < 2; ð2Þ

where g ¼ G00ðxÞ=G0ðxÞ ¼ tanððx� 1Þp=2Þ is the structural
damping coefficient. The physical interpretation of each of
the material constants associated with power-law rheology
is discussed in [1]. It is noteworthy that in Sollich’s theory
[1,16], a characteristic reference frequency is considered as
the maximum rate at which material elements can escape
their traps. Insight into the mechanistic basis of cytoskele-
ton rheology is provided in [17,18], where the role of con-
tractile stresses in the cytoskeleton on regulating its
rheological properties was explored.

Computational models that incorporate the material law
associated with power-law rheology can help to describe
the overall response of the material, providing a tool for
accurate assessment of the material constants associated
with the power-law rheology from experimental observa-
tions. Lau et al. [19] showed that the cytoskeleton can be
treated as a course-grained continuum with power-law rhe-
ology, driven by a spatially random stress tensor field.
Here, we develop a computational approach incorporating
a power-law material model based on finite element
method and employ it to explore cytoskeleton dynamics
by simulating the cell response in twisting bead experiments
as described in [2,3]. The theoretical background of the
material model is presented in Section 2, while the details
of the computational model are described in Section 3. A
parametric study is carried out in Section 4 using the devel-
oped computational model. In Section 5, the developed
computational model is employed to replicate experimental
measurements on human airway smooth muscle (HASM)
cells from Fabry et al. [3]. Conclusions from the computa-
tions are presented in Section 6.
2. Theoretical background

To model the frequency dependence exhibited by soft
glassy materials, we adopted the frequency-domain viscos-
ity model, in conjunction with isotropic linear elasticity
[20]. Consider a shear test at small strain, in which a har-
monically varying shear strain of amplitude c0 and radian
frequency x is applied

cðtÞ ¼ c0eixt; ð3Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and t is time. We consider the situation in
which the specimen has been exposed to oscillatory forcing
for a very long time so that a steady-state response is
achieved. The solution for the shear stress then has the
form

sðtÞ ¼ GðxÞc0eixt; ð4Þ

where GðxÞ is the complex, frequency-dependent shear
modulus of the material and is in the form of

GðxÞ ¼ G0ðxÞ þ iG00ðxÞ: ð5Þ

Eq. (3) implies that the material response to applied har-
monic strain is the superposition of a stress of magnitude
G0ðxÞcðtÞ that is in phase with the strain and a stress of
magnitude G00ðxÞcðtÞ that lags the excitation by 90�. The
absolute magnitude of the stress amplitude is

js0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02ðxÞ þ G002ðxÞ

q
jc0j ð6Þ

and the associated phase lag of the stress response is

/ ¼ arctan
G00ðxÞ
G0ðxÞ

� �
: ð7Þ

Experimental measurements of js0j and / at various
excitation frequencies can thus be used to estimate G0ðxÞ
and G00ðxÞ. In the subsequent calculations, we consider
the material model associated with power-law rheology,
where the storage and loss moduli both vary as xx�1 with
a constant, frequency-independent ratio as expressed in
Eq. (1). The developed computational approach is capable
of incorporating other types of frequency-dependant rheol-
ogies (as will be exemplified later).

The employed constitutive law assumes that the shear
(deviatoric) and volumetric behaviors are independent in
multiaxial stress states. Similar to that for shear, a com-
plex, frequency-dependent bulk stiffness, in the form of
KðxÞ ¼ K 0ðxÞ þ iK 00ðxÞ, can be incorporated in the calcu-
lations. However, for the present application, we have sim-
ply treated the bulk modulus as real and constant:
K 0ðxÞ ¼ K ¼ constant and K 00ðxÞ ¼ 0, and postulated that
the viscous behavior of cell is associated only with devia-
toric straining. The bulk modulus is related to the material
elastic modulus, E, and Poisson ratio, m, which are the
input to the finite element model, by: K ¼ E=3ð1� 2mÞ.

3. Details of the computational model

Numerical simulations were performed corresponding
to published experiments using the method of magnetic
twisting cytometry (MTC) that has been widely employed
for the measurement of cell rheology (Fig. 1). In all the cal-
culations, the microbead is modeled as a rigid sphere with
radius 2.25 lm. The material bonded to the rigid sphere is
taken to be homogeneous and isotropic with density q and
follow the material model associated with power-law rheol-
ogy under shear, while its volumetric behavior is assumed
to follow a linear elastic response (as described in Section
2). The bottom surface of the substrate is fixed while other
surfaces are unconstrained (zero stress). To minimize the
effect of boundary conditions, the model dimensions are



Fig. 1. (a) Schematic diagram of magnetic twisting cytometry. (b) Corresponding computational model. Only one half of the system is analyzed due to the
symmetry of the structure and the loading conditions as shown in the computational model. The arrows show the direction of the applied harmonic torque
(along axis 3). Eight-node linear brick elements with reduced integration are used in the calculations (C3D8R) [20]. The microbead is modeled as a rigid
sphere (inset).
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taken to be substantially larger than the microbead radius
and the induced-displacement field. The microbead is fully
bonded to the material and is constrained to undergo trans-
lation only in the direction of axis 1 and rotation along axis
3 (see Fig. 1). A harmonic excitation in the form of
T ðtÞ ¼ T 0eixt with frequency of f ¼ x=2p is applied to
the microbead. The frequency-domain viscosity model, dis-
cussed in Section 2, is employed in the computations to
study the steady-state response of the cytoskeleton. The
frequency-dependant shear storage and loss moduli are
inputted to the computational model for each set of mate-
rial constants associated with power-law rheology, G0, x
and x0. The steady-state linearized response of the system
is attained by performing direct-solution steady-state
dynamic analysis [20]. All computations are performed
using a commercially available finite element modeling
software ABAQUS (Hibbit, Karlsson and Sorensen Inc.,
Providence, RI). To accurately capture details of deforma-
tion and the associated stress/strain patterns, a finer mesh
pattern is employed in the vicinity of the microbead. A
mesh sensitivity study was conducted to ensure the inde-
pendence of the results from the computational mesh to
within 1% in bead motion. In these calculations, we neglect
the effect of pre-stress in the surrounding material due to
inserting the microbead. Although this can be incorporated
in the constitutive behavior, we hypothesized that the har-
monic excitation is applied sufficiently long after the micro-
bead attachment so that the surrounding material has had
time to remodel and thereby relax any stresses this initial
deformation might impose. The output of these computa-
tional analyses includes the steady-state displacement
amplitude and phase angle at nodal points including the
nodal point associated with the rigid microbead.

It should be emphasized that although the developed
computational model is capable of analyzing the response
of the material with power-law rheology under steady-state
dynamic loading, however it can not be directly employed
for other loading conditions such as quasi-static and tran-
sient loading conditions. While MTC is the most widely
used method for characterizing the rheology of cytoskele-
ton, however other experimental procedures such as micro-
pipette aspiration have recently yielded similar qualitative
observations indicating that the power-law rheology is an
intrinsic feature of the cell structure. This motivates devel-
oping computational approaches for analyzing the
response of these materials under general loading condi-
tions, which is the focus of our future study.

4. Numerical results

Results are presented in terms of time histories of
applied harmonic torque and the corresponding steady-
state response of the microbead (Fig. 2a). The bead move-
ment lags the imposed harmonic force/torque, which is the
intrinsic characteristic of systems with viscosity. The visco-
elastic material model presented in Eq. (1) has three inde-
pendent material constants, (G0;x0; xÞ. In all the
calculations presented in this section, the following param-
eters are set to be constant: q = 1 g/cm3, E = 2.9 kPa,
m = 0.45 (which corresponds to the bulk modulus of
K = 9.7 kPa, G0 = 1 kPa, x0 = 1 rad/s). In this study, we
kept the material Poisson ratio constant (m ¼ 0:45) to focus
our study on the role of material constants associated with
the power-law rheology on the response. However, a set of
calculations was carried out to study the role of material
bulk modulus, which characterizes its volumetric behavior,
on the response under harmonic excitation applied to the
microbead for a constant set of material constants associ-
ated with the power-law rheology. The results reveal a con-
siderable sensitivity of the response amplitude to the
material bulk modulus but little qualitative difference.
The degree of sensitivity depends on the excitation fre-
quency and x (data not shown).

Fig. 2b and c show the calculated torque–displacement
response at various frequencies of applied excitation for
material having x ¼ 1:2 (corresponding to g ¼ 0:325) and
x ¼ 1:5 (corresponding to g ¼ 1), respectively. The ampli-
tude of the response decreases with increasing frequency
of applied excitation leading to a more localized deforma-
tion. Distributions of the amplitude of effective (von Mises)



Fig. 2. (a) Time histories of applied harmonic excitation and displacement of the center of the microbead along axis 1 at the excitation frequency of 1 Hz
for x ¼ 1:2 (corresponding to g ¼ 0:325) and x ¼ 1:5 (corresponding to g ¼ 1). (b) and (c) Simulated torque–displacement response in MTC at various
frequencies of harmonic torque for x ¼ 1:2 and x ¼ 1:5, respectively. The phase angle between torque and bead displacement remain approximately
constant for each set of calculations and only depends on x (�15� for x ¼ 1:2 and �45� for x ¼ 1:5). (d) Distributions of the amplitude of effective (von
Mises) stress and amplitude of pressure for x ¼ 1:5 and f = 1 Hz. (The calculated pattern is not fully symmetric with respect to the 2–3 plane crossing the
center of the bead due to numerical error.) The results are presented for the following parameter values: G0 = 1 kPa, x0 = 1 rad/s, E = 2.9 kPa, q = 1 g/
cm3, m = 0.45. The rigid microbead has a radius R = 2.25 lm with a/R = 0.178. A harmonic torque with the amplitude of T0 = 4 nN lm is applied along
axis 3.
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stress and hydrostatic pressure in the model with x ¼ 1:5
excited at the frequency of 1 Hz are depicted in Fig. 2d.
The dependence of the amplitude of bead displacement
on the excitation frequency is depicted in Fig. 3 in log–
log scale for various values of x ranging between
1 6 x 6 2. It is noteworthy that at the glass transition,
i.e. x ¼ 1, the material properties are independent of the
frequency of excitation, i.e. G0 ¼ G0 while G00 ¼ 0. At high
frequencies of excitation, the amplitude of response sub-
stantially decreases on increasing the value of x (Fig. 3b).
In contrast at low frequencies of excitation, the amplitude
of response increases on increasing the value of x from 1.
The distribution of the amplitude of effective stress and
amplitude of hydrostatic pressure in general exhibit a sig-
nificantly lower sensitivity to the excitation frequency and
material constant x (data not shown).



Fig. 3. (a) Dependence of the response amplitude (displacement along axis
1) on the frequency of excitation for various values of x. (b) Dependence
of the response amplitude on x at various excitation frequencies.
Calculations are performed using: G0 = 1 kPa, x0 = 1 rad/s,
E = 2.9 kPa, q = 1 g/cm3, m ¼ 0:45. The rigid microbead has a radius
R = 2.25 lm with a/R = 0.178. Amplitude of the applied torque is
T0 = 4 nN lm.
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In the numerical study presented here and in interpret-
ing the experimental observations, which will be discussed
in Section 5, the cell is modeled as one homogenous isotro-
pic material, neglecting the roles of the membrane, cortex
or nucleus. This is in agreement with a similar computa-
tional model by Mijailovich et al. [21], where the cytoskel-
eton is assumed to be a homogeneous linear elastic
material. Our previous studies show that the role of the cell
membrane on the overall response of cell during magneto-
cytometry is negligible at low to moderate frequencies
(�100 Hz) [22]. However, it is conceivable that the cell
membrane could significantly alter the mechanical response
and its underlying mechanisms at higher frequencies or
under different loading conditions such as indentation
[23], emphasizing the need for biomechanical models of
the cell that incorporate these different structures.

5. Comparison with experimental observations

The proposed computational model for magnetic twist-
ing cytometry (MTC) is employed to mimic the experimen-
tal observations of Fabry et al. [3] on HASM cells. The
experiments were performed using MTC with optical detec-
tion of bead motion [24,25]. The ferromagnetic microbeads
were coated with a variety of antibody and non-antibody
ligands, which bind to specific cell surface receptors that
link to the cytoskeleton (e.g., via integrin receptors). This
is consistent with the assumption of no-slip, no-separation
contact in our numerical simulations. The readers are
referred to Fabry et al. [3] for details of cell culture and
experimental procedure. Analysis of the experimental data
clearly indicates that the cytoskeleton behaves according to
power-law rheology with parameter x, which is defined as
material ‘noise temperature’ in Sollich’s theory [1,16], lying
between 1.15 and 1.35 for various cell types with the value
of �1.2 for HASM cells [2,3]. Another interesting point
that emerges from the experimental measurements is that
for all practical purposes a single parameter x is sufficient
to characterize the changes in cell material behavior under
various forms of drug-induced challenges to the cell,
namely contraction or relaxation of the cytoskeletal net-
work [2,3,13,15], since G0 and x0 appear to be universal
constants. One intriguing aspect of the experimental results
is the degree of variability observed when the bead is teth-
ered to different receptors, or, even when beads of different
composition are coated with the same ligand [10]. This
raises the prospect that receptor-ligand binding kinetics,
or more specifically, the character of bond formation and
rupture, might influence experimental results for mem-
brane-tethered microbeads. While the observed agreement
of intracellular bead motion to power-law rheology in
other recent experiments on isolated nuclei [26] suggests
that receptor kinetics are not dominant, similar effects
throughout the cytoskeleton, involving, for example, tran-
sient binding and rupture of actin cross-linking proteins,
could contribute to the overall behavior.

Here, fitting to the experimental results is achieved by
varying G0 and x, while the following material properties
are prescribed in the computations; q = 1 g/cm3 and
m = 0.45. To further limit the number of material parameters
in the fitting procedure, in this set of calculations we
assumed that the ratio of the material bulk modulus to its
shear storage modulus at the reference excitation frequency
of 1 rad/s, i.e. G0=K, remains constant and equal to 0.1.
It was found that the computational results closely repli-
cate the experimental observations for the following mate-
rial constants associated with power-law rheology: G0 =
3.8 kPa for x0 = 1 rad/s and x ¼ 1:3 (corresponding to
g ’ 0:51) (Fig. 4). The fitting to the experimental results
using our computational model suggests a slightly stronger
frequency-dependence than that reported in Fabry et al. [3]
(x � 1:2 for HASM cells). In addition, by fitting to the
overall response exhibited by the cell in microbead twisting
experiment, Fabry et al. [3] estimated the value of G0 to be
�41 kPa for the reference frequency of x0� 25�106 rad=s,
which scales to G0 = 1.36 kPa for x0 = 1 rad/s (assuming
x¼ 1:2 based on the experimental prediction), which is also
in acceptable agreement with laser tracking microrheology
observations in kidney epithelial cells [27].



Fig. 4. Comparison between the numerical results and the experimental
data from Fabry et al. for HASM cells [3] (inset). The average radius of
the ferromagnetic microbeads used in the experiment and also the radius
of the rigid sphere in the numerical simulations are 2.25 lm with
a=R ¼ 0:178. Fitting to the experimental results yields the following
material constants associated with power-law rheology: G0 = 3.8 kPa (for
x0 = 1 rad/s) and x ¼ 1:3 (corresponding to g ’ 0:51). The following
material parameters are used in the numerical simulations: q = 1 g/cm3,
E = 11 kPa and m = 0.45 (corresponding to K = 36.7 kPa). Results are
presented for bead displacement vs. specific torque (the mechanical
torque/bead volume).

Fig. 5. Torque-displacement response in MTC at an excitation frequency
of 100 Hz for various values of l. The shear loss modulus of the material
follows Eq. (8). Calculations are performed for: G0 = 1 kPa, x0 = 1 rad/s,
x = 1.2, E = 2.9 kPa, q = 1 g/cm3, m ¼ 0:45. The rigid microbead has
R = 2.25 lm with a=R ¼ 0:178.

Fig. 6. In this set of calculations, G0ðxÞ ¼ G0ðx=x0Þx�1 cos ðx�1Þp
2

h i
and

G00ðxÞ ¼ g0G0ðxÞ. Calculations are performed for: G0 = 1.4 kPa,
x0 = 1 rad/s, E = 4 kPa, q = 1 g/cm3, m ¼ 0:45, x ¼ 1:5. The rigid micro-
bead has a radius R = 2.25 lm with a=R ¼ 0:178. Amplitude and
frequency of the applied torque are 4 nN lm and 1 Hz, respectively.
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It is noteworthy that the Newtonian viscosity term sug-
gested by Fabry et al. [3] for justifying the curvilinearity
observed in G00data at relatively high frequencies of excita-
tion for most cell types is not incorporated in the results
presented in Fig. 4. This added viscosity modifies the mate-
rial shear loss modulus according to

G00ðxÞ ¼ gG0ðxÞ þ lx; 1 6 x < 2; ð8Þ

where l is the viscous damping coefficient and the storage
modulus is that of Eq. (2). Here, the material loss modulus
exhibits a higher degree of dependence on the excitation
frequency with the exponent approaching 1 at very high
frequencies, as observed experimentally. Fabry et al. [3]
estimated that this additive viscosity, which is uncoupled
from cytoskeleton dynamics, is on the order of 1 Pa s. A
set of calculations was carried out to understand the role
of this additive viscosity on the overall response of the
material, Fig. 5. These calculations were performed at the
excitation frequency of 100 Hz and for the following mate-
rial parameters: q = 1 g/cm3, E = 2.9 kPa, m ¼ 0:45,
G0 = 1 kPa and x0 = 1 rad/s, x ¼ 1:2. As one would ex-
pect, this additive viscosity decreases the response ampli-
tude at high frequencies of excitation, signaling the
transition to fluid-like behavior. It is noteworthy that the
frequency-domain viscosity model employed here is, in
general, capable of modeling other frequency-dependant
forms of microrheology. An additional example based on
a new set of calculations is discussed in Fig. 6, where the
structural damping coefficient of the material denoted by
g0 is taken as an independent material constant (note that
the material law does not follow the power-law rheology).
6. Concluding remarks

A wide range of theoretical models exist for cytoskeletal
mechanics, ranging from continuum models for cell defor-
mation to actin filament-based models for cell motility [28].
A computational approach is presented here which incor-
porates the material model associated with power-law rhe-
ology observed in soft glassy materials when it is subjected
to steady-state dynamic loading. The developed computa-
tional model is capable of relating the microrheology and
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material constants to overall response of the material and is
employed to model the cell response in microbead twisting
cytometry to gain some insight into dynamics of cytoskel-
etal viscoelasticity under mechanical perturbation. Combi-
nation of the current computational model with rigorous
experimental observations can provide a robust tool for
investigating the rheology of cells and nuclei, providing
insight into the complex dynamics of their response under
mechanical stimuli.
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